This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A237413 Number of ways to write n = k + m with k > 0 and m > 0 such that p(k)^2 - 2, p(m)^2 - 2 and p(p(m))^2 - 2 are all prime, where p(j) denotes the j-th prime. 8
 0, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 3, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 5, 3, 1, 3, 3, 3, 3, 3, 1, 3, 1, 2, 2, 5, 2, 3, 3, 5, 2, 5, 7, 3, 3, 4, 5, 5, 5, 4, 4, 5, 2, 3, 4, 7, 5, 3, 4, 8, 6, 5, 4, 6, 5, 4, 2, 6, 5, 6, 5, 2, 6, 7 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Conjecture: a(n) > 0 for all n > 1. This conjecture was motivated by the "Super Twin Prime Conjecture". See A237414 for primes q with q^2 - 2 and p(q)^2 - 2 both prime. LINKS Zhi-Wei Sun, Table of n, a(n) for n = 1..10000 Zhi-Wei Sun, Super Twin Prime Conjecture, a message to Number Theory List, Feb. 6, 2014. Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014 EXAMPLE a(7) = 1 since 7 = 6 + 1 with p(6)^2 - 2 = 13^2 - 2 = 167, p(1)^2 - 2 = 2^2 - 2 = 2 and p(p(1))^2 - 2 = p(2)^2 - 2 = 3^2 - 2 = 7 are all prime. a(516) = 1 since 516 = 473 + 43 with p(473)^2 - 2 = 3359^2 - 2 = 11282879, p(43)^2 - 2 = 191^2 - 2 = 36479 and p(p(43))^2 - 2 = p(191)^2 - 2 = 1153^2 - 2 = 1329407 all prime. MATHEMATICA pq[k_]:=PrimeQ[Prime[k]^2-2] a[n_]:=Sum[If[pq[k]&&pq[n-k]&&pq[Prime[n-k]], 1, 0], {k, 1, n-1}] Table[a[n], {n, 1, 80}] CROSSREFS Cf. A000040, A049002, A062326, A218829, A237348, A237367, A237414. Sequence in context: A032548 A030597 A030599 * A157343 A102679 A025146 Adjacent sequences:  A237410 A237411 A237412 * A237414 A237415 A237416 KEYWORD nonn AUTHOR Zhi-Wei Sun, Feb 07 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 16 02:16 EDT 2019. Contains 327088 sequences. (Running on oeis4.)