This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A237364 Numbers n of the form n=Phi(7,p) (for prime p) such that Phi(7,n) is also prime. 1
 616067011, 58749951412747, 93054242152309543, 146945091162352770847, 2224989620406870255043, 43184085337135904888293, 53224134341571172990843, 109539169818149034933067, 308295173856880401026941, 6197901576526752380316343, 14789135287218506962379317 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Phi(7,x) =1+x+x^2+x^3+x^4+x^5+x^6 =A053716(x) is the 7th cyclotomic polynomial. LINKS EXAMPLE 616067011 = 29^6+29^5+29^4+29^3+29^2+29+1 (29 is prime) and 616067011^6+616067011^5+616067011^4+616067011^3+616067011^2+616067011+1 = 54672347801779330810964871392077416495507203132755717 is prime. Thus, 616067011 is a member of this sequence. MAPLE for k from 1 do     p := ithprime(k) ;     n := numtheory[cyclotomic](7, p) ;     pn := numtheory[cyclotomic](7, n) ;     if isprime( pn) then         print(n) ;     end if; end do: # R. J. Mathar, Feb 07 2014 PROG (Python) import sympy from sympy import isprime {print(n**6+n**5+n**4+n**3+n**2+n+1) for n in range(10**5) if isprime(n) and isprime((n**6+n**5+n**4+n**3+n**2+n+1)**6+(n**6+n**5+n**4+n**3+n**2+n+1)**5+(n**6+n**5+n**4+n**3+n**2+n+1)**4+(n**6+n**5+n**4+n**3+n**2+n+1)**3+(n**6+n**5+n**4+n**3+n**2+n+1)**2+(n**6+n**5+n**4+n**3+n**2+n+1)+1)} CROSSREFS Cf. A088550. Sequence in context: A236948 A184216 A123705 * A251498 A233848 A018786 Adjacent sequences:  A237361 A237362 A237363 * A237365 A237366 A237367 KEYWORD nonn AUTHOR Derek Orr, Feb 06 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 19:36 EDT 2019. Contains 324234 sequences. (Running on oeis4.)