login
T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with the maximum minus the minimum of every 2X2 subblock equal
8

%I #4 Feb 06 2014 06:45:49

%S 256,1980,1980,15082,41220,15082,120808,821234,821234,120808,972356,

%T 17627820,39609294,17627820,972356,7935194,380945760,2137181038,

%U 2137181038,380945760,7935194,65088736,8406402902,114598315886

%N T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with the maximum minus the minimum of every 2X2 subblock equal

%C Table starts

%C .........256.............1980................15082....................120808

%C ........1980............41220...............821234..................17627820

%C .......15082...........821234.............39609294................2137181038

%C ......120808.........17627820...........2137181038..............300627324700

%C ......972356........380945760.........114598315886............41627000140944

%C .....7935194.......8406402902........6318680517398..........5948570417327342

%C ....65088736.....187274820848......350887832861914........853258883465178716

%C ...536949612....4212082221444....19674122669454962.....123366442531682683412

%C ..4446049514...95349805566302..1108527743646628762...17883818961748533773410

%C .36942292664.2169810608997912.62708450627429169774.2598541529967055129095912

%H R. H. Hardin, <a href="/A237340/b237340.txt">Table of n, a(n) for n = 1..112</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 12]

%F k=2: [order 25]

%F k=3: [order 59]

%e Some solutions for n=2 k=4

%e ..0..0..1..0..2....0..0..0..2..1....0..0..0..0..1....0..0..0..3..2

%e ..0..2..0..2..0....0..3..0..3..0....0..3..0..3..0....0..3..0..0..1

%e ..0..0..2..1..0....2..3..3..3..3....1..0..1..1..2....2..1..3..3..2

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Feb 06 2014