login
A237274
a(n) = A236283(n) mod 9.
0
2, 1, 4, 5, 1, 4, 2, 7, 7, 5, 7, 7, 2, 4, 1, 5, 4, 1, 2, 1, 4, 5, 1, 4, 2, 7, 7, 5, 7, 7, 2, 4, 1, 5, 4, 1, 2, 1, 4, 5, 1, 4, 2, 7, 7, 5, 7, 7, 2, 4, 1, 5, 4, 1, 2, 1, 4, 5, 1, 4, 2, 7, 7, 5, 7, 7, 2, 4, 1, 5, 4, 1
OFFSET
0,1
COMMENTS
(Conjecture) This has period 18: repeat 2, 1, 4, 5, 1, 4, 2, 7, 7, 5, 7, 7, 2, 4, 1, 5, 4, 1.
The first 19 terms and the following 17 are palindromes.
The sorted terms in the conjectured period are 1, 1, 1, 1, 2, 2, 2, 4, 4, 4, 4, 5, 5, 5, 7, 7, 7, 7.
Via the extended differences of A236283(n+1) and A236283(n+18) - A236283(n) which is A008600(n+9)=162, 180,... ,it is easy to see that A236283(0)=2.
A236283(-n) = A236283(n).
A236283(n) difference table:
2, 1, 4, 5, 10, 13, 20, 25, 34, 41,...
-1, 3, 1, 5, 3, 7, 5, 9, 7, 11,... = A097062(n+1)
4, -2, 4, -2, 4, -2, 4, -2, 4, -2,...
-6, 6, -6, 6, -6, 6, -6, 6, -6, 6,... .
A097062(n+1) mod 9 = (a(n+1) -a(n)) mod 9 =
period 18: repeat 8, 3, 1, 5, 3, 7, 5, 0, 7, 2, 0, 4, 2, 6, 4, 8, 6, 1 =b(n). b(n) + b(18-n)= 9, 9, 9, 9, 9, 9, 9, 0, 9.
Ordered b(n)=
period 18: repeat 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8.
FORMULA
a(n) = A236283(n) mod 9.
CROSSREFS
Sequence in context: A375123 A194363 A161135 * A038730 A188106 A050166
KEYWORD
nonn
AUTHOR
Paul Curtz, Feb 05 2014
STATUS
approved