%I #4 Feb 05 2014 05:22:45
%S 256,1160,1160,5130,8396,5130,24478,59386,59386,24478,117800,472096,
%T 655186,472096,117800,581660,3795060,8448682,8448682,3795060,581660,
%U 2899672,31758656,107553623,185371924,107553623,31758656,2899672
%N T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with the upper median plus the lower median minus the minimum of every 2X2 subblock equal
%C Table starts
%C .......256.........1160...........5130.............24478..............117800
%C ......1160.........8396..........59386............472096.............3795060
%C ......5130........59386.........655186...........8448682...........107553623
%C .....24478.......472096........8448682.........185371924..........3917422192
%C ....117800......3795060......107553623........3917422192........131209756954
%C ....581660.....31758656.....1448414238.......89734494932.......4937949728725
%C ...2899672....268073808....19305898426.....1999471396100.....174915940209829
%C ..14622828...2299621682...264733943408....46699481853014....6720032915022118
%C ..74221442..19798836956..3593534378650..1063936806945636..244904587362771736
%C .379011938.171720524760.49695732377361.25099790888660098.9553718420124306088
%H R. H. Hardin, <a href="/A237211/b237211.txt">Table of n, a(n) for n = 1..112</a>
%F Empirical for column k:
%F k=1: [linear recurrence of order 33]
%F k=2: [order 97]
%e Some solutions for n=2 k=4
%e ..0..1..0..3..0....0..2..3..0..1....0..3..1..2..2....0..1..0..3..1
%e ..2..1..1..1..1....1..2..1..2..2....0..2..1..2..2....1..2..1..1..0
%e ..1..2..2..2..3....2..3..2..2..1....0..2..1..2..2....2..1..0..1..3
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Feb 05 2014