login
A237202
Irregular triangle read by rows: T(n,k) = Sum_{i=0..k} (-1)^i * binomial(5*n+1,i) * binomial(k+5-i,5)^n, 0 <= k <= 5*(n-1).
10
1, 1, 25, 100, 100, 25, 1, 1, 200, 5925, 52800, 182700, 273504, 182700, 52800, 5925, 200, 1, 1, 1275, 167475, 6021225, 84646275, 554083761, 1858142825, 3363309675, 3363309675, 1858142825, 554083761, 84646275
OFFSET
1,3
COMMENTS
In general, define b(k,e,p) = Sum_{i=0..k} (-1)^i*binomial(e*p+1,i)*binomial(k+e-i,e)^p. Then T(n,k) = b(k,5,n).
Using these coefficients we can obtain formulas for binomial(n,e)^p and for Sum_{i=1..n} binomial(e-1+i,e)^p.
In particular:
binomial(n, e)^p = Sum_{k=0..e*(p-1)} b(k,e,p) * binomial(n+k, e*p).
Sum_{i=1..n} binomial(e-1+i, e)^p = Sum_{k=0..e*(p-1)} b(k,e,p) * binomial(n+e+k, e*p+1).
T(n,k) is the number of permutations of 5 indistinguishable copies of 1..n with exactly k descents. A descent is a pair of adjacent elements with the second element less than the first. - Andrew Howroyd, May 08 2020
FORMULA
Sum_{i=1..n} binomial(4+i,5)^p = Sum{k=0..5*(p-1)} T(p,k) * binomial(n+5+k, 5*p+1).
binomial(n,5)^p = Sum_{k=0..5*(p-1)} T(p,k) * binomial(n+k, 5*p).
EXAMPLE
T(n,0) = 1;
T(n,1) = 6^n - (5*n+1);
T(n,2) = 21^n - (5*n+1)*6^n + C(5*n+1,2);
T(n,3) = 56^n - (5*n+1)*21^n + C(5*n+1,2)*6^n - C(5*n+1,3) ;
T(n,4) = 126^n - (5*n+1)*56^n + C(5*n+1,2)*21^n - C(5*n+1,3)*6^n + C(5*n+1,4).
Triangle T(n,k) begins:
1;
1, 25, 100, 100, 25, 1;
1, 200, 5925, 52800, 182700, 273504, 182700, 52800, 5925, 200, 1;
1, 1275, 167475, 6021225, 84646275, 554083761, 1858142825, 3363309675, 3363309675, 1858142825, 554083761, 84646275, 6021225, 167475, 125, 1;
1, 7750, 3882250, 447069750, 18746073375, 359033166276, 3575306548500, 20052364456500, 66640122159000, 135424590593500, 171219515211316, 135424590593500, 66640122159000, 20052364456500, 3575306548500, 359033166276, 18746073375, 447069750, 3882250, 7750, 1;
...
Example:
Sum_{i=1..n} C(4+i,5)^3 = C(n+5,16) + 200*C(n+6,16) + 5925*(n+7,16) + 52800*C(n+8,16) + 182700*C(n+9,16) + 273504*C(n+10,16) + 182700*C(n+11,16) + 52800*C(n+12,16) + 5925*C(n+13,16) + 200*C(n+14,16) + C(n+15,16).
C(n,5)^3 = C(n,15) + 200*C(n+1,15) + 5925*C(n+2,15) + 52800*C(n+3,15) + 182700*C(n+4,15) + 273504*C(n+5,15) + 182700*C(n+6,15) + 52800*C(n+7,15) + 5925*C(n+8,15) + 200*C(n+9,15) + C(n+10,15).
MATHEMATICA
b[k_, 5, p_] := Sum[(-1)^i*Binomial[5*p+1, i]*Binomial[k-i, 5]^p /. k -> 5+i, {i, 0, k-5}]; row[p_] := Table[b[k, 5, p], {k, 5, 5*p}]; Table[row[p], {p, 1, 5}] // Flatten (* Jean-François Alcover, Feb 05 2014 *)
PROG
(PARI) T(n, k)={sum(i=0, k, (-1)^i*binomial(5*n+1, i)*binomial(k+5-i, 5)^n)} \\ Andrew Howroyd, May 08 2020
CROSSREFS
Columns k=2..5 are A151647, A151648, A151649, A151650.
Row sums are A014609.
Similar triangles for e=1..6: A173018 (or A008292), A154283, A174266, A236463, this sequence, A237252.
Sum_{i=1..n} binomial(4+i,5)^p for p=2..3 gives: A086025, A086026.
Sequence in context: A266818 A158547 A144854 * A353152 A335717 A198385
KEYWORD
nonn,tabf
AUTHOR
Yahia Kahloune, Feb 05 2014
EXTENSIONS
Edited by Andrew Howroyd, May 08 2020
STATUS
approved