login
A237115
Lesser prime factor of the smallest semiprime of the form k^prime(n)+1, or 0 if no such semiprime exists.
3
2, 3, 3, 3, 3, 3, 3, 3, 3, 691, 3, 17, 313, 3, 7, 11, 7, 3, 11, 47, 19, 3, 1499, 17, 71, 3, 97, 7, 13, 823, 3, 97, 1163, 31, 17, 199, 1907, 53, 3, 17, 1231, 1013, 3, 13, 53, 3, 67, 47, 23, 1013, 787, 127, 347, 17, 37, 97, 683, 631, 73, 4549, 173, 11, 17, 1039, 3, 17, 47, 6389, 3, 461, 23, 673, 37, 29, 331, 7451, 1433, 4561
OFFSET
1,1
COMMENTS
For n > 1, smallest prime p such that ((p-1)^prime(n)+1)/p is prime; the corresponding primes ((p-1)^prime(n)+1)/p are A237116(n) = 3, 11, 43, 683, 2731, 43691, 174763, 2796203, ... and the corresponding semiprimes (p-1)^prime(n)+1 are A237114(n) = 9, 33, 129, 2049, 8193, 131073, 524289, 8388609, ... .
LINKS
Eric Weisstein's World of Mathematics, Semiprime
Wikipedia, Semiprime
FORMULA
a(n) = A237114(n)/A237116(n), for n > 0.
(a(n)-1)^prime(n) = A237114(n)-1, for n > 1.
a(n) == A237114(n) (mod prime(n)) (for a proof, see A237114).
a(n) mod prime(n) = A237117(n), if a(n) > 0.
EXAMPLE
Prime(1)=2 and the smallest semiprime of the form k^2+1 is 3^2+1 = 10 = 2*5, so a(1) = 2.
Prime(2)=3 and the smallest semiprime of the form k^3+1 is 2^3+1 = 9 = 3*3, so a(2) = 3.
MATHEMATICA
L = {2}; Do[p = Prime[k]; n = 1; q = Prime[n] - 1; cp = (q^p + 1)/(q + 1); While[! PrimeQ[cp], n = n + 1; q = Prime[n] - 1; cp = (q^p + 1)/(q + 1)]; L = Append[L, q + 1], {k, 2, 78}]; L
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Feb 04 2014
STATUS
approved