login
A237026
Number of partitions of the n-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes.
3
1, 1, 8, 132, 3440, 124250, 5770692, 328480502, 22171138432, 1732321234710, 153860041920200, 15314241603864346, 1688777066667724992, 204402336519440816068, 26942653699545370953376, 3842033763551789263983510, 589364606143191408040312960
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^n] G_n, where G_n satisfies: (-1)^n*x = Sum_{i=0..n} (-1)^i*C(n,i)*(G_n*x)^(2^(n-i)).
a(n) ~ 2^(2*n) * n^(n - 3/2) / (sqrt(Pi) * exp(1/8)). - Vaclav Kotesovec, Jun 11 2018
MATHEMATICA
b[n_, k_, t_] := b[n, k, t] = If[t==0, 1, If[t==1, A[n-1, k], Sum[A[j, k]* b[n-j-1, k, t-1], {j, 0, n-2}]]];
a[n_] := If[n==0, 1, -Sum[Binomial[n, j]*(-1)^j*b[n+1, n, 2^j], {j, 1, n}]];
a /@ Range[0, 16] (* Jean-François Alcover, Oct 19 2019, after Alois P. Heinz in A237018 *)
CROSSREFS
Main diagonal of A237018.
Cf. A300474.
Sequence in context: A349683 A222429 A365340 * A079912 A281948 A128287
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 02 2014
STATUS
approved