This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A236988 Real part of the product of all the Gaussian integers in the rectangle [1, 1] to [2, n]. 0
 1, -20, 140, 200, -67600, 3983200, -228488000, 14375920000, -1002261520000, 74864404160000, -5398716356800000, 221997813232000000, 54286859023072000000, -27326116497867200000000, 9481971502321385600000000, -3155347494162485190400000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS By Gaussian integers, we mean complex numbers of the form a + bi, where both a and b are integers in Z, i = sqrt(-1). Thus the quadratic integer ring under consideration here is Z[i]. LINKS FORMULA a(n) +(2*n+3)*(n-2)*a(n-1) +n*(n+1)*(n^2-4*n+8)*a(n-2) -2*(n^2-4*n+8)*(n^2-4*n+5)*a(n-3)=0. - R. J. Mathar, Feb 08 2014 EXAMPLE For n = 2, we have (1 + i)(1 + 2i)(2 + i)(2 + 2i) which gives -20 + 0i, so a(2) = -20. MATHEMATICA Table[Re[Times@@Flatten[Table[a + b I, {a, 2}, {b, n}]]], {n, 20}] (* Alonso del Arte, Feb 02 2014 *) PROG (JavaScript) function cNumber(x, y) { return [x, y]; } function cMult(a, b) { return [a[0] * b[0] - a[1] * b[1], a[0] * b[1] + a[1] * b[0]]; } for (i = 1; i < 20; i++) { c = cNumber(1, 0); for (j = 1; j <= 2; j++) for (k = 1; k <= i; k++) c = cMult(c, cNumber(j, k)); document.write(c[0] + ", "); } (PARI) a(n) = real(prod(i=1, 2, prod(j=1, n, i+I*j))); \\ Michel Marcus, Feb 03 2014 CROSSREFS Cf. A105750, A234459, A204041. Sequence in context: A264315 A264308 A328174 * A134382 A105939 A054389 Adjacent sequences:  A236985 A236986 A236987 * A236989 A236990 A236991 KEYWORD sign AUTHOR Jon Perry, Feb 02 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 14:22 EDT 2019. Contains 328017 sequences. (Running on oeis4.)