login
Number of nonzero quartic residues modulo the n-th prime.
1

%I #26 Jun 04 2021 02:45:12

%S 1,1,1,3,5,3,4,9,11,7,15,9,10,21,23,13,29,15,33,35,18,39,41,22,24,25,

%T 51,53,27,28,63,65,34,69,37,75,39,81,83,43,89,45,95,48,49,99,105,111,

%U 113,57,58,119,60,125,64,131,67,135,69,70,141,73,153,155,78

%N Number of nonzero quartic residues modulo the n-th prime.

%F For odd primes, if prime(n)=4k+1 then a(n)=(prime(n)-1)/4, if prime(n)=4k+3 then a(n)=(prime(n)-1)/2.

%F a(n) = numerator(1/2 - 1/(prime(n)+1)). - _Michel Marcus_, Feb 26 2019

%e a(5)=5 for x^4 (mod 11=prime(5)) equals 1, 3, 4, 5, 9.

%o (PARI) a(n) = numerator(1/2 - 1/(prime(n)+1)); \\ _Michel Marcus_, Feb 26 2019

%o (PARI) a(n) = my(p=prime(n)); sum(k=0, p-1, m = Mod(k,p); m && ispower(Mod(k,p), 4)); \\ _Michel Marcus_, Feb 26 2019

%o (Python)

%o from sympy import prime

%o from fractions import Fraction

%o def a(n): return (Fraction(1, 2) - Fraction(1, (prime(n)+1))).numerator

%o print([a(n) for n in range(1, 66)]) # _Michael S. Branicky_, Jun 04 2021

%Y Cf. A000040, A130290, A236959, A306591.

%K nonn,frac

%O 1,4

%A _Carmine Suriano_, Apr 22 2014