login
A236956
E.g.f. satisfies: A'(x) = A(x)^7 * A(-x)^3 with A(0) = 1.
5
1, 1, 4, 46, 568, 11920, 249760, 7572880, 224573440, 8889771520, 341458163200, 16665769120000, 786624917478400, 45625565188403200, 2555686067488153600, 171677981964256768000, 11132816984129032192000, 849791969438296428544000, 62624820152427866324992000, 5352961417325349446434816000
OFFSET
0,3
FORMULA
E.g.f.: 1/(1 - 3*x*G(3*x^2))^(1/3) where G(x) = 1 + x*G(x)^3 = g.f. of A001764.
E.g.f.: 1/(1 - 3*Series_Reversion( Integral (1 - 9*x^2) dx ))^(1/3).
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 46*x^3/3! + 568*x^4/4! + 11920*x^5/5! +...
Related series.
A(x)^7 = 1 + 7*x + 77*x^2/2! + 1267*x^3/3! + 26873*x^4/4! + 712831*x^5/5! +...
A(x)^3 = 1 + 3*x + 9*x^2 + 36*x^3 + 135*x^4 + 567*x^5 + 2268*x^6 + 9720*x^7 +... where A(x)^3 = 1/(1 - 3*x*G(3*x^2)) where G(x) = 1 + x*G(x)^3.
Note that 1 - 1/A(x)^3 is an odd function:
1 - 1/A(x)^3 = 3*x + 9*x^3 + 81*x^5 + 972*x^7 + 13365*x^9 + 199017*x^11 +...
where Series_Reversion((1 - 1/A(x)^3)/3) = Integral (1-9*x^2) dx.
PROG
(PARI) {a(n)=local(A=1); for(i=0, n, A=1+intformal(A^7*subst(A^3, x, -x) +x*O(x^n) )); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=local(A=1); A=1/(1-3*serreverse(intformal((1-9*x^2 +x*O(x^n))^(3/3))))^(1/3); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 09 2014
STATUS
approved