login
A236952
Primes p such that p^4 - p +/- 1 are twin primes.
1
13, 79, 3571, 3739, 5023, 5443, 7459, 7621, 10243, 13339, 14251, 17359, 17551, 17863, 17971, 18061, 19483, 21481, 27631, 32611, 37501, 38821, 48463, 49711, 54709, 56443, 57073, 57751, 69313, 71353, 72883, 74293, 81883, 82051, 84223
OFFSET
1,1
COMMENTS
Intersection of A236940 and A236071.
LINKS
EXAMPLE
13 is prime and 13^4-13-1 (28547) and 13^4-13+1 (28549) are twin primes. So, 13 is a member of this sequence.
MATHEMATICA
Select[Prime[Range[10000]], PrimeQ[#^4 - # - 1] && PrimeQ[#^4 - # + 1]&] (* Vincenzo Librandi, Feb 14 2014 *)
PROG
(Python)
import sympy
from sympy import isprime
{print(n) for n in range(10**6) if isprime(n) and isprime(n**4-n-1) and isprime(n**4-n+1)}
(Magma) [p: p in PrimesUpTo(90000) | IsPrime(p^4-p-1) and IsPrime(p^4-p+1)]; // Vincenzo Librandi, Feb 14 2014
CROSSREFS
Sequence in context: A032625 A120782 A032652 * A136373 A071614 A045552
KEYWORD
nonn
AUTHOR
Derek Orr, Feb 01 2014
STATUS
approved