OFFSET
7,6
COMMENTS
The first 13 rows of T(n,k) are:
.\ k 0 1 2 3 4 5 6 7 8 9
n
7 1 1
8 1 1
9 1 3
10 1 3
11 1 6
12 1 6
13 1 10
14 1 10 20 4 1
15 1 15 65 59 14
16 1 15 153 329 174
17 1 21 295 1225 1234
18 1 21 507 3465 6124
19 1 28 810 8358 23259
20 1 28 1214 17710 73204
LINKS
Christopher Hunt Gribble, C++ program
FORMULA
It appears that:
T(n,0) = 1, n>= 7
T(n,1) = (floor((n-7)/2)+1)*(floor((n-7)/2+2))/2, n >= 7
T(c+2*7,2) = A131474(c+1)*(7-1) + A000217(c+1)*floor((7-1)(7-3)/4) + A014409(c+2), 0 <= c < 7, c odd
T(c+2*7,3) = (c+1)(c+2)/2(2*A002623(c-1)*floor((7-c-1)/2) + A131941(c+1)*floor((7-c)/2)) + S(c+1,3c+2,3), 0 <= c < 7 where
S(c+1,3c+2,3) =
A054252(2,3), c = 0
A236679(5,3), c = 1
A236560(8,3), c = 2
A236757(11,3), c = 3
A236800(14,3), c = 4
A236829(17,3), c = 5
A236865(20,3), c = 6
EXAMPLE
T(14,3) = 4 because the number of equivalent classes of ways of placing 3 7 X 7 square tiles in an 14 X 14 square under all symmetry operations of the square is 4. The portrayal of an example from each equivalence class is:
.___________________ ___________________
| | | | |_________|
| | | | | |
| | | | | |
| . | . | | . | |
| | | | | . |
| | | | | |
|_________|_________| |_________| |
| | | | |_________|
| | | | | |
| | | | | |
| . | | | . | |
| | | | | |
| | | | | |
|_________|_________| |_________|_________|
.
.___________________ ___________________
| | | | | |
| |_________| | | |
| | | | |_________|
| . | | | . | |
| | | | | |
| | . | | | |
|_________| | |_________| . |
| | | | | |
| |_________| | | |
| | | | |_________|
| . | | | . | |
| | | | | |
| | | | | |
|_________|_________| |_________|_________|
CROSSREFS
KEYWORD
tabf,nonn
AUTHOR
Christopher Hunt Gribble, Jan 31 2014
STATUS
approved