login
A236861
Characteristic function of A236841 (A234741): a(n) = 1 if n is a result of downward remultiplication (N -> GF(2)[X]) of some number, 0 otherwise.
8
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1
OFFSET
0
FORMULA
a(0)=1, a(1)=1, a(p)=1 for primes p, and for composite n which are irreducible in GF(2)[X] (terms of A091214), a(n)=0, and for other composite n (terms of A091212), a(n) = 1 only if there exists at least one such pair of k, m < n that n = A048720(k,m) and a(k)*a(m) = 1, and 0 otherwise.
(Please compare also to the formula for A236862).
PROG
(Scheme, two quite inefficient implementations, which require also definec and/or GF2Xdivide from a linked Scheme-source file)
(definec (A236861 n) (if (zero? (A236833 n)) 0 1))
(definec (A236861 n) (cond ((< n 2) 1) ((prime? n) 1) ((= 1 (A091225 n)) 0) (else (let loop ((d 2)) (cond ((= d n) 0) ((and (= d (A091255bi n d)) (not (zero? (* (A236861 d) (A236861 (GF2Xdivide n d)))))) 1) (else (loop (+ d 1))))))))
CROSSREFS
Positions of zeros occur in the same positions as in A236833; sequence A236834 gives these positions.
Sequence in context: A015343 A296077 A322674 * A016300 A016126 A016068
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 13 2014
STATUS
approved