login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A236861 Characteristic function of A236841 (A234741): a(n) = 1 if n is a result of downward remultiplication (N -> GF(2)[X]) of some number, 0 otherwise. 8
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..8192

A. Karttunen, Scheme-program, containing a few functions needed for computing this sequence.

FORMULA

a(0)=1, a(1)=1, a(p)=1 for primes p, and for composite n which are irreducible in GF(2)[X] (terms of A091214), a(n)=0, and for other composite n (terms of A091212), a(n) = 1 only if there exists at least one such pair of k, m < n that n = A048720(k,m) and a(k)*a(m) = 1, and 0 otherwise.

(Please compare also to the formula for A236862).

PROG

(Scheme, two quite inefficient implementations, which require also definec and/or GF2Xdivide from a linked Scheme-source file)

(definec (A236861 n) (if (zero? (A236833 n)) 0 1))

(definec (A236861 n) (cond ((< n 2) 1) ((prime? n) 1) ((= 1 (A091225 n)) 0) (else (let loop ((d 2)) (cond ((= d n) 0) ((and (= d (A091255bi n d)) (not (zero? (* (A236861 d) (A236861 (GF2Xdivide n d)))))) 1) (else (loop (+ d 1))))))))

CROSSREFS

Positions of zeros occur in the same positions as in A236833; sequence A236834 gives these positions.

Cf. A236841, A234741, A236862, A048720, A091225, A091255.

Sequence in context: A296077 A322674 A256175 * A016300 A016126 A016068

Adjacent sequences:  A236858 A236859 A236860 * A236862 A236863 A236864

KEYWORD

nonn

AUTHOR

Antti Karttunen, Apr 13 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 22 07:17 EDT 2019. Contains 326172 sequences. (Running on oeis4.)