login
Smallest number not dividing n^2.
5

%I #21 Jan 14 2024 02:25:44

%S 2,3,2,3,2,5,2,3,2,3,2,5,2,3,2,3,2,5,2,3,2,3,2,5,2,3,2,3,2,7,2,3,2,3,

%T 2,5,2,3,2,3,2,5,2,3,2,3,2,5,2,3,2,3,2,5,2,3,2,3,2,7,2,3,2,3,2,5,2,3,

%U 2,3,2,5,2,3,2,3,2,5,2,3,2,3,2,5,2,3,2

%N Smallest number not dividing n^2.

%C Differs from A053669, "smallest prime not dividing n", for the first time at n=210, where a(210)=8, while A053669(210)=11. A235921 lists all n for which a(n) differs from A053669(n).

%C Differs from A214720 at n=2, 210, 630, 1050, 1470, 1890, 2310,.... - _R. J. Mathar_, Mar 30 2014

%H Antti Karttunen, <a href="/A236454/b236454.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A007978(A000290(n)) = A007978(n^2).

%F a(n) = A235918(n)+1.

%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=0} 1/A019554(A003418(k)) = 2.91240643793540602415... . - _Amiram Eldar_, Jan 14 2024

%p A236454 := proc(n)

%p for m from 2 do

%p if modp(n^2,m) <> 0 then

%p return m;

%p end if;

%p end do:

%p end proc:# _R. J. Mathar_, Mar 30 2014

%t Join[{2,3},Table[Complement[Range[n],Divisors[n^2]][[1]],{n,3,90}]] (* _Harvey P. Dale_, Mar 18 2018 *)

%o (Scheme) (define (A236454 n) (A007978 (A000290 n)))

%Y One more than A235918.

%Y Cf. A003418, A019554.

%Y Cf. also A000290, A007978, A053669, A235921.

%K nonn

%O 1,1

%A _Antti Karttunen_, Jan 26 2014