login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A236432 a(n) = (2n-1)*210; numbers which are 210 times an odd number. 2
210, 630, 1050, 1470, 1890, 2310, 2730, 3150, 3570, 3990, 4410, 4830, 5250, 5670, 6090, 6510, 6930, 7350, 7770, 8190, 8610, 9030, 9450, 9870, 10290, 10710, 11130, 11550, 11970, 12390, 12810, 13230, 13650, 14070, 14490, 14910, 15330, 15750, 16170, 16590, 17010 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

This is a subsequence of A235921, from which it differs for the first time at n = 1062348, where a(n) = ((2*1062348)-1)*210 = 446185950, while A235921(n) = 446185740.

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10001

Index entries for linear recurrences with constant coefficients, signature (2,-1).

Index entries for sequences which agree for a long time but are different

FORMULA

a(n) = (2n-1) * 210 = 420*n - 210.

For all n, A236454(a(n)) = 8, while A053669(a(n)) >= 11. [Cf. comments at A235921]

MAPLE

A236432:=n->420*n - 210; seq(A236432(n), n=1..50); # Wesley Ivan Hurt, Mar 13 2014

MATHEMATICA

Table[420 n - 210, {n, 50}] (* Wesley Ivan Hurt, Mar 13 2014 *)

LinearRecurrence[{2, -1}, {210, 630}, 41] (* Ray Chandler, Jul 14 2015 *)

PROG

(Scheme, two alternative versions)

(define (A236432 n) (* (+ n n -1) 210))

(define (A236432 n) (- (* 420 n) 210))

CROSSREFS

Cf. A235921.

Sequence in context: A235304 A121479 A235921 * A118279 A163263 A009127

Adjacent sequences:  A236429 A236430 A236431 * A236433 A236434 A236435

KEYWORD

nonn,easy

AUTHOR

Antti Karttunen, Jan 25 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 25 03:50 EDT 2019. Contains 321450 sequences. (Running on oeis4.)