login
Left factorial !p, where p = prime(n).
3

%I #18 Sep 08 2022 08:46:06

%S 2,4,34,874,4037914,522956314,22324392524314,6780385526348314,

%T 1177652997443428940314,316196664211373618851684940314,

%U 274410818470142134209703780940314,382630662501032184766604355445682020940314,836850334330315506193242641144055892504420940314

%N Left factorial !p, where p = prime(n).

%H G. C. Greubel, <a href="/A236399/b236399.txt">Table of n, a(n) for n = 1..87</a>

%H Romeo Mestrovic, <a href="http://arxiv.org/abs/1312.7037">Variations of Kurepa's left factorial hypothesis</a>, arXiv:1312.7037 [math.NT], 2013.

%F a(n) = Sum_{k=0..(prime(n)-1} k!. - _G. C. Greubel_, Mar 29 2019

%p lf:=n->add(k!,k=0..n-1);

%p [seq(lf(ithprime(n)),n=1..30)];

%p # 2nd program:

%p A236399 := proc(n)

%p A003422(ithprime(n)) ;

%p end proc:

%p seq(A236399(n),n=1..5) ; # _R. J. Mathar_, Dec 19 2016

%t leftFac[n_] := Sum[k!, {k, 0, n - 1}];

%t a[n_] := leftFac[Prime[n]];

%t Array[a, 13] (* _Jean-François Alcover_, Nov 24 2017 *)

%o (PARI) vector(15, n, sum(k=0,prime(n)-1, k!)) \\ _G. C. Greubel_, Mar 29 2019

%o (Magma) [(&+[Factorial(k): k in [0..(NthPrime(n)-1)]]): n in [1..15]]; // _G. C. Greubel_, Mar 29 2019

%o (Sage) [sum(factorial(k) for k in (0..(nth_prime(n)-1))) for n in (1..15)] # _G. C. Greubel_, Mar 29 2019

%Y A subsequence of A003422.

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Jan 29 2014