login
a(n) = Fibonacci(p) mod p^2, where p = prime(n).
3

%I #20 Sep 22 2020 05:52:29

%S 1,2,5,13,89,64,152,210,91,378,869,443,1641,85,1832,2066,296,1465,

%T 2009,4474,3211,5057,2572,4184,2909,10000,9475,10164,1418,9378,7238,

%U 4193,14795,17793,8941,4531,21194,13528,24214,18683,15574,28237,8978,15632,5515,20299,11817,24529,34049,2062,23765,29159,21932,31376,65791,20776,43848,27101,29638

%N a(n) = Fibonacci(p) mod p^2, where p = prime(n).

%H Alois P. Heinz, <a href="/A236395/b236395.txt">Table of n, a(n) for n = 1..20000</a>

%p p:= (M, n, k)-> map(x-> x mod k, `if`(n=0, <<1|0>, <0|1>>,

%p `if`(n::even, p(M, n/2, k)^2, p(M, n-1, k).M))):

%p a:= n-> (q-> p(<<0|1>, <1|1>>, q, q^2)[1, 2])(ithprime(n)):

%p seq(a(n), n=1..80); # _Alois P. Heinz_, Oct 10 2015

%o (PARI) a(n) = my(p = prime(n)); fibonacci(p) % p^2; \\ _Michel Marcus_, Jan 29 2014

%Y Cf. A030426, A051831, A132634.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, Jan 28 2014