

A236390


Positive integers m with 2^m*p(m) + 1 prime, where p(.) is the partition function (A000041).


3



1, 9, 11, 15, 34, 36, 43, 80, 152, 159, 168, 200, 205, 354, 402, 957, 1898, 2519, 2729, 2932, 3075, 3740, 4985, 5839, 7911, 9868, 10210, 24624, 27735, 31553, 37190
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

According to the conjecture in A236389, this sequence should have infinitely many terms.
The prime 2^(a(31))*p(a(31)) + 1 = 2^(37190)*p(37190) + 1 has 11405 decimal digits.


LINKS

ZhiWei Sun, Table of n, a(n) for n = 1..31


EXAMPLE

a(1) = 1 since 2^1*p(1) + 1 = 2*1 + 1 = 3 is prime.


MATHEMATICA

q[n_]:=PrimeQ[2^n*PartitionsP[n]+1]
n=0; Do[If[q[m], n=n+1; Print[n, " ", m]], {m, 1, 10000}]


CROSSREFS

Cf. A000040, A000041, A236389.
Sequence in context: A063191 A329167 A216976 * A048464 A075824 A228951
Adjacent sequences: A236387 A236388 A236389 * A236391 A236392 A236393


KEYWORD

nonn


AUTHOR

ZhiWei Sun, Jan 24 2014


STATUS

approved



