login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A236328 a(n) = sigma(n,1) + sigma(n,2) + ... + sigma(n,n). 2
1, 8, 42, 374, 3910, 57210, 960806, 19261858, 435877581, 11123320196, 313842837682, 9729290348244, 328114698808286, 11967567841654606, 469172063576559644, 19676848703371278522, 878942778254232811954, 41661071646298278566886, 2088331858752553232964218 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Sigma(n,k) is the sum of the k-th powers of the divisors of n.

The sequence seems to be strictly increasing. - Chayim Lowen, Aug 05 2015.

This is true. Moreover, subsequent ratios a(n+1)/a(n) steadily grow for n>3. The difference of subsequent ratios tends to the limit e = 2.718... The reason is that a(n) roughly behaves like n^n; already the second largest term in the sum is smaller by a factor 2^n (for even n) or by a factor 3^n (for n=6k+3) etc.). - M. F. Hasler, Aug 16 2015

LINKS

Robert Israel, Table of n, a(n) for n = 1..353

FORMULA

a(n) = n + Sum_{d|n, d>1} d*(d^n-1)/(d-1). - Chayim Lowen, Aug 02 2015

a(n) >= n*(n^n+n-2)/(n-1) for n>1. - Chayim Lowen, Aug 05 2015

a(n) = A065805(n)-A000005(n). - Chayim Lowen, Aug 11 2015

EXAMPLE

a(4) = sigma(4,1) + sigma(4,2) + sigma(4,3) + sigma(4,4) = 7 + 21 + 73 + 273 = 374.

MAPLE

seq(add(numtheory:-sigma[k](n), k=1..n), n=1..50); # Robert Israel, Aug 04 2015

MATHEMATICA

Table[Sum[DivisorSigma[i, n], {i, n}], {n, 19}] (* Michael De Vlieger, Aug 06 2015 *)

f[n_] := Sum[DivisorSigma[i, n], {i, n}]; (* OR *) f[n_] := Block[{d = Rest@Divisors@n}, n + Total[(d^(n + 1) - d)/(d - 1)]]; (* then *) Array[f, 19] (* Robert G. Wilson v, Aug 06 2015 *)

PROG

(PARI) vector(30, n, sum(k=1, n, sigma(n, k)))

(PARI) vector(30, n, n + sumdiv(n, d, if (d>1, (d^(n+1)-d)/(d-1)))) \\ Michel Marcus, Aug 04 2015

CROSSREFS

Cf. A000203, A001157, A001158, A001159, A001160, A109974.

Cf. A000005, A065805.

Cf. A236329.

Sequence in context: A266474 A238723 A316283 * A284337 A052666 A065789

Adjacent sequences: A236325 A236326 A236327 * A236329 A236330 A236331

KEYWORD

nonn,easy

AUTHOR

Colin Barker, Jan 22 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 08:36 EST 2022. Contains 358493 sequences. (Running on oeis4.)