login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A236282 T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with 2X2 subblock sum of squares lexicographically nondecreasing rowwise and columnwise 4

%I

%S 81,432,432,2304,5805,2304,9504,87450,87450,9504,39204,901317,4297035,

%T 901317,39204,138402,9293996,134940646,134940646,9293996,138402,

%U 488601,73777097,4211459815,13055877546,4211459815,73777097,488601,1553877

%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with 2X2 subblock sum of squares lexicographically nondecreasing rowwise and columnwise

%C Table starts

%C .......81.........432...........2304.............9504.............39204

%C ......432........5805..........87450...........901317...........9293996

%C .....2304.......87450........4297035........134940646........4211459815

%C .....9504......901317......134940646......13055877546.....1257559565027

%C ....39204.....9293996.....4211459815....1257559565027...374969850504444

%C ...138402....73777097....95929739101...86958471603770.79511653034814238

%C ...488601...583531732..2162880693927.5933159964415314

%C ..1553877..3814287681.38763321249354

%C ..4941729.24858329516

%C .14587326

%H R. H. Hardin, <a href="/A236282/b236282.txt">Table of n, a(n) for n = 1..60</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 26]

%e Some solutions for n=2 k=4

%e ..0..2..2..0..2....1..2..0..0..2....0..1..2..0..0....0..0..0..0..2

%e ..0..0..0..2..2....1..0..2..2..1....1..0..0..2..2....0..0..2..1..1

%e ..1..2..1..0..0....1..2..1..1..2....2..2..2..1..2....2..1..2..1..2

%Y Column 1 is A235417

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Jan 21 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 24 14:50 EST 2020. Contains 332209 sequences. (Running on oeis4.)