login
A236258
Decimal expansion of 2 + 21/4*(4/11)^(4/3).
2
3, 3, 6, 2, 6, 4, 3, 9, 0, 5, 9, 6, 1, 4, 3, 3, 7, 8, 0, 3, 7, 3, 6, 2, 7, 2, 5, 7, 0, 0, 1, 4, 4, 4, 1, 9, 9, 9, 4, 6, 0, 6, 6, 1, 3, 6, 3, 0, 6, 3, 4, 5, 4, 0, 0, 4, 7, 5, 2, 8, 7, 4, 3, 5, 7, 9, 7, 8, 4, 0, 5, 5, 3, 4, 9, 2, 9, 1, 7, 6, 2, 5, 9, 7, 5, 2, 7, 7, 0, 1, 2, 5, 9, 7, 9, 6, 6, 5, 0, 9, 6, 5, 5, 7, 9
OFFSET
1,1
COMMENTS
Evolution of the effective number of relativistic degrees of freedom contributing to energy density, g(*), can be seen on a graph as a function of temperature. At the energy scales below 0.1 MeV, g(*) is equal to this constant (in the Standard Model and in the minimal extension of Standard Model).
REFERENCES
Benjamin Bederson, More Things in Heaven and Earth: A Celebration of Physics at the Millennium, Springer-Verlag, New York, 1999, p. 272.
J. C. Niemeyer and J. W. Truran, Type la Supernovae: Theory and Cosmology, Cambridge University Press, 2000, p. 107.
EXAMPLE
3.362643905961433780373627257001444199946066136306345400475287435797840...
MAPLE
Digits:=100: evalf(2+21/4*(4/11)^(4/3)); # Wesley Ivan Hurt, Oct 05 2014
MATHEMATICA
RealDigits[N[2 + 21/4*(4/11)^(4/3), 105]][[1]]
PROG
(Magma) n:=2+21/4*(RealField(105)!4/11)^(4/3); Reverse(Intseq(Floor(10^104*n)));
(PARI) default(realprecision, 105); x=2+21/4*(4/11)^(4/3); for(n=1, 105, d=floor(x); x=(x-d)*10; print1(d, ", "));
CROSSREFS
Cf. A111728.
Sequence in context: A205548 A010609 A066519 * A105158 A020813 A034188
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved