login
A236248
Numbers m with C(2*m, m) - prime(m) prime, where C(2*m, m) = (2*m)!/(m!)^2.
5
2, 5, 6, 10, 29, 132, 266, 322, 350, 538, 667, 693, 776, 977, 1336, 1810, 1908, 1980, 2175, 2616, 2716, 3211, 3473, 5223, 5630, 5758, 6585, 6979, 7964, 8469, 9052, 9758, 10324, 16876, 25760, 28171
OFFSET
1,1
COMMENTS
According to the conjecture in A236256, this sequence should have infinitely many terms.
The prime C(2*a(36), a(36)) - prime(a(36)) = C(56342, 28171) - prime(28171) has 16959 decimal digits.
See A236249 for primes of the form C(2*m, m) - prime(m).
See also A236242 for a similar sequence.
LINKS
EXAMPLE
a(1) = 2 since C(2*1, 1) - prime(1) = 2 - 2 = 0 is not prime, but C(2*2, 2) - prime(2) = 6 - 3 = 3 is prime.
MATHEMATICA
n=0; Do[If[PrimeQ[Binomial[2m, m]-Prime[m]], n=n+1; Print[n, " ", m]], {m, 1, 10000}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 21 2014
STATUS
approved