login
A236071
Primes p such that p^4 - p - 1 is prime.
4
2, 5, 7, 11, 13, 23, 53, 61, 71, 79, 137, 139, 193, 229, 239, 251, 293, 317, 373, 433, 523, 599, 601, 683, 727, 859, 877, 887, 911, 991, 1009, 1163, 1229, 1297, 1303, 1429, 1481, 1483, 1789, 1801, 1871, 1999, 2011
OFFSET
1,1
COMMENTS
Primes in A126424.
LINKS
EXAMPLE
139 is prime and 139^4 - 139 - 1 is prime, so 139 is a member of this sequence.
MATHEMATICA
Select[Prime[Range[400]], PrimeQ[#^4-#-1]&] (* Harvey P. Dale, Jan 20 2019 *)
PROG
(Python)
import sympy
from sympy import isprime
{print(p) for p in range(10**4) if isprime(p**4-p-1) and isprime(p)}
(PARI)
s=[]; forprime(p=2, 3000, if(isprime(p^4-p-1), s=concat(s, p))); s \\ Colin Barker, Jan 19 2014
CROSSREFS
Cf. A049408.
Sequence in context: A120330 A023216 A079449 * A038885 A302988 A079379
KEYWORD
nonn
AUTHOR
Derek Orr, Jan 19 2014
STATUS
approved