login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A236066 Primes p with g(p), g(g(p)), g(g(g(p))), g(g(g(g(p)))), g(g(g(g(g(p))))) all prime, where g(n) = prime(n) - n - 1. 2
5, 98893, 1110709, 4231849, 5319707, 6763349, 7904087, 10823431, 13893109, 15323939, 15544079, 15716713, 17642899, 18978439, 20126237 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Conjecture: For any integer m > 1, there are infinitely many chains p(1) < ... < p(m) of m primes with p(k+1) = prime(p(k)) - p(k) - 1 for all 0 < k < m.

This is similar to the conjecture in A235925.

LINKS

Zhi-Wei Sun, Table of n, a(n) for n = 1..15

EXAMPLE

a(1) = 5 since neither g(2) = prime(2) - 2 - 1 = 0 nor g(3) = prime(3) - 3 - 1 = 1 is prime, but 5 = g(5) = g(g(5)) =  g(g(g(5))) = g(g(g(g(5)))) = g(g(g(g(g(5))))) is prime.

a(2) = 98893 with 98893, g(98893) = 1185113, g(1185113) = 17381209, g(17381209) = 304696943, g(304696943) = 6262760333, g(6262760333) = 148561011217 all prime.

MATHEMATICA

g[n_]:=Prime[n]-n-1

p[k_]:=PrimeQ[g[Prime[k]]]&&PrimeQ[g[g[Prime[k]]]]&&PrimeQ[g[g[g[Prime[k]]]]]&&PrimeQ[g[g[g[g[Prime[k]]]]]]&&PrimeQ[g[g[g[g[g[Prime[k]]]]]]]

n=0; Do[If[p[k], n=n+1; Print[n, " ", Prime[k]]], {k, 1, 10^6}]

CROSSREFS

Cf. A000040, A234695, A235925, A235934, A235935, A235984.

Sequence in context: A263174 A123591 A133381 * A151589 A243114 A038027

Adjacent sequences:  A236063 A236064 A236065 * A236067 A236068 A236069

KEYWORD

nonn

AUTHOR

Zhi-Wei Sun, Jan 18 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 19:32 EDT 2020. Contains 337265 sequences. (Running on oeis4.)