

A235945


Number of partitions of n containing at least one prime.


2



0, 0, 1, 2, 3, 5, 8, 12, 17, 24, 34, 48, 65, 88, 118, 157, 205, 269, 348, 450, 575, 734, 929, 1176, 1473, 1845, 2297, 2856, 3527, 4355, 5346, 6558, 8004, 9759, 11848, 14374, 17363, 20958, 25210, 30292, 36278, 43412, 51792, 61733, 73383, 87146, 103239, 122194
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000


FORMULA

a(n) = A000041(n)  A002095(n).
Product_{k>0} 1/(1x^k)  Product_{k>0} (1x^prime(k))/(1x^k).  Alois P. Heinz, Jan 18 2014


EXAMPLE

a(5) = 5 because 5 partitions of 5 contain at least one prime: [5], [3,2], [3,1,1], [2,2,1], [2,1,1,1].


MAPLE

b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i1)+`if`(i>n or isprime(i), 0, b(ni, i))))
end:
a:= n> combinat[numbpart](n) b(n, n):
seq(a(n), n=0..50); # Alois P. Heinz, Jan 18 2014


MATHEMATICA

b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, b[n, i1] + If[i>n  PrimeQ[i], 0, b[ni, i]]]]; a[n_] := PartitionsP[n]b[n, n]; Table[a[n], {n, 0, 50}] (* JeanFrançois Alcover, Jan 28 2014, after Alois P. Heinz *)


CROSSREFS

Cf. A000041, A002095.
Sequence in context: A280276 A233969 A240202 * A129504 A241553 A241549
Adjacent sequences: A235942 A235943 A235944 * A235946 A235947 A235948


KEYWORD

nonn


AUTHOR

J. Stauduhar, Jan 17 2014


STATUS

approved



