login
A235875
The number of integers that are smaller than n and whose array of divisors begins like the array of divisors of n.
1
0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 2, 2, 2, 3, 3, 1, 2, 1, 5, 2, 2, 2, 2, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 2, 2, 3, 2, 3, 1, 4, 2, 3, 2, 2, 1, 2, 1, 2, 2, 6, 2, 3, 1, 3, 2, 2, 1, 2, 1, 2, 3, 3, 2, 3, 1, 3, 4, 2, 1, 2, 2, 2, 2
OFFSET
1,4
COMMENTS
For a prime power n = p^q, a(n) = q.
Records are obtained for 1, 2, 4, 8, ... (A000079).
It appears that a(n) <= A001222(n).
Numbers such that a(n) < A001221(n) are: 30, 60, 70, 84, 90, 105, ...
Numbers such that A001221(n) <= a(n) < A001222(n) are: 12, 24, 36, 40, 45, 48, 56, 63, 72, 80, 96, 108, ...
LINKS
EXAMPLE
The divisors of 5 are [1, 5], and the divisors of 1 to 4 are [1], [1, 2], [1, 3], [1, 2, 4]. Among these, only the divisors of 1 begin like those of 5. Hence a(5) = 1.
The divisors of 6 are [1, 2, 3, 6], and the divisors of 1 to 5 are [1], [1, 2], [1, 3], [1, 2, 4], [1, 5]. Among these, only the divisors of 1 and 2 begin like those of 6. Hence a(6) = 2.
MATHEMATICA
a[n_] := Length@ Select[Union@ FoldList[LCM, 1, Most@(d = Divisors@n)], # < n && (e = Divisors@#; e == Take[d, Length@e]) &]; Array[a, 87] (* Giovanni Resta, Jan 16 2014 *)
PROG
(PARI) a(n) = {d = divisors(n); nb = 0; for (i = 1, n-1, di = divisors(i); if ((#di <= #d) && (sum(k=1, #di, di[k] == d[k]) == #di), nb++); ); nb; }
CROSSREFS
Cf. A027750.
Sequence in context: A304687 A076558 A328195 * A328026 A326975 A204893
KEYWORD
nonn
AUTHOR
Michel Marcus, Jan 16 2014
STATUS
approved