OFFSET
1,1
COMMENTS
All the terms in the sequence are congruent to 5 mod 6.
The constants in the definition (2, 24 and 246) are the concatenation of first even digits 2,4 and 6.
LINKS
K. D. Bajpai, Table of n, a(n) for n = 1..5178
EXAMPLE
a(2) = 17 is a prime: 17+2 = 19, 17+24 = 41 and 17+246 = 263 are also prime.
a(3) = 107 is a prime: 107+2 = 119, 107+24 = 131 and 107+246 = 353 are also prime.
MAPLE
KD:= proc() local a, b, d, e; a:= ithprime(n); b:=a+2; d:=a+24; e:=a+246; if isprime(b) and isprime(d) and isprime(e) then return (a) :fi; end: seq(KD(), n=1..15000);
MATHEMATICA
KD = {}; Do[p = Prime[n]; If[PrimeQ[p + 2] && PrimeQ[p + 24] && PrimeQ[p + 246], AppendTo[KD, p]], {n, 15000}]; KD
c = 0; p = Prime[n]; Do[If[PrimeQ[p + 2] && PrimeQ[p + 24] && PrimeQ[p + 246], c = c + 1; Print[c, " ", Prime[n]]], {n, 1, 5000000}]; (* b - file *)
PROG
(PARI) s=[]; forprime(p=2, 50000, if(isprime(p+2) && isprime(p+24) && isprime(p+246), s=concat(s, p))); s \\ Colin Barker, Apr 21 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Apr 21 2014
STATUS
approved