login
A235870
Expansion of ( f(-q)^12 + 22 * q * f(-q)^6 * f(-q^5)^6 + 125 * q^2 * f(-q^5)^12 ) / (f(-q) * f(-q^5))^2 in powers of q where f() is a Ramanujan theta function.
1
1, 12, 72, 264, 696, 1380, 2304, 3192, 5400, 6924, 12600, 12384, 18912, 20184, 28512, 39000, 43032, 45432, 63144, 63600, 101640, 88944, 110304, 112104, 151200, 174540, 183024, 188400, 231936, 225000, 351360, 274704, 346392, 344448, 407952, 479400, 509592
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of ( ( (f(-q) * f(-q^5))^4 + 9*q * (f(-q) * f(-q^3) * f(-q^5) * f(-q^15))^2 + 27*q * (f(-q^3) * f(-q^15))^4 ) / (f(-q) * f(-q^3) * f(-q^5) * f(-q^15)) )^2 in powers of q where f() is a Ramanujan theta function.
G.f. is a period 1 Fourier series which satisfies f(-1 / (5 t)) = 25 (t/i)^4 f(t) where q = exp(2 Pi i t).
Convolution square of A028887.
EXAMPLE
G.f. = 1 + 12*q + 72*q^2 + 264*q^3 + 696*q^4 + 1380*q^5 + 2304*q^6 + ...
PROG
(PARI) {a(n) = my(A, u1, u5); if( n<0, 0, A = x * O(x^n); u1 = eta(x + A); u5 = eta(x^5 + A); polcoeff( ( u1^12 + 22*x * (u1 * u5)^6 + 125*x^2 * u5^12 ) / (u1 * u5)^2, n))};
(PARI) {a(n) = my(A, v1, v3); if( n<0, 0, A = x * O(x^n); v1 = eta(x + A) * eta(x^5 + A) ; v3 = eta(x^3 + A) * eta(x^15 + A) ; polcoeff( ( v1^4 + 9*x * (v1 * v3)^2 + 27*x^2 * v3^4 )^2 / (v1 * v3)^2, n))};
(Sage) A = ModularForms( Gamma0(5), 4, prec=36) . basis(); A[1] + 12/13 * (3*A[0] + 10*A[2]); # Michael Somos, Jun 13 2014
(Magma) A := Basis( ModularForms( Gamma0(5), 4), 36); A[1] + 12*A[2] + 72*A[3]; /* Michael Somos, Jun 13 2014 */
CROSSREFS
Cf. A028887.
Sequence in context: A188660 A047928 A300847 * A008533 A010024 A008414
KEYWORD
nonn
AUTHOR
Michael Somos, Jun 13 2014
STATUS
approved