login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A235866 G-cyclic numbers: numbers n such that gcd(n,A060968(n))=1. 4
1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 29, 31, 35, 37, 41, 43, 47, 51, 53, 55, 57, 59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 97, 101, 103, 105, 107, 109, 113, 115, 119, 123, 127, 129, 131, 133, 137, 139, 143, 145, 149, 151, 155, 157, 159, 161 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

From Robert Israel, May 01 2020: (Start)

All terms are odd and squarefree.

Contains all odd primes.

If n is a member, then so are all divisors of n.

(End)

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

Jose María Grau, A. M. Oller-Marcen, Manuel Rodriguez and D. Sadornil, Fermat test with Gaussian base and Gaussian pseudoprimes, arXiv:1401.4708 [math.NT], 2014.

MAPLE

g:= proc(p, e) if p=2 or e > 1 then 0

  elif p mod 4 = 1 then p-1 else p+1 fi

end proc:

h:= proc(n) mul(g(t[1], t[2]), t=ifactors(n)[2]) end proc:

select(n -> igcd(n, h(n))=1, [seq(i, i=1..2000, 2)]); # Robert Israel, May 01 2020

MATHEMATICA

fa=FactorInteger; phi[1]=1; phi[p_, s_] := Which[Mod[p, 4] == 1, p^(s-1)*(p-1), Mod[p, 4]==3, p^(s-1)*(p+1), s==1, 2, True, 2^(s+1)]; phi[1]=1; phi[n_] := Product[phi[fa[n][[i, 1]], fa[n][[i, 2]]], {i, Length[fa[n]]}]; Select[Range[1000], GCD[phi[#], #] == 1 &]

CROSSREFS

Cf. A060968, A003277.

Sequence in context: A334420 A056911 A152955 * A334141 A325570 A210719

Adjacent sequences:  A235863 A235864 A235865 * A235867 A235868 A235869

KEYWORD

nonn

AUTHOR

José María Grau Ribas, Jan 19 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 17:16 EDT 2020. Contains 334630 sequences. (Running on oeis4.)