

A235806


Odd primes p with (p^2  1)/4  prime((p  1)/2) and (p^2  1)/4  prime((p + 1)/2) both prime.


3



7, 11, 19, 29, 41, 43, 53, 59, 89, 109, 139, 179, 181, 229, 379, 401, 421, 431, 541, 587, 659, 811, 991, 1069, 1103, 1117, 1231, 1259, 1459, 1471, 1619, 1709, 1831, 1951, 2179, 2791, 2797, 2833, 2851, 3001, 3391, 3571, 3617, 3631, 3637, 3671, 3793, 3863, 3929, 3967
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

By the conjecture in A235805, this sequence should have infinitely many terms.


LINKS

ZhiWei Sun, Table of n, a(n) for n = 1..10000


EXAMPLE

a(1) = 7 since neither (3^21)/4  prime((31)/2) = 0 nor (5^21)/4  prime((5+1)/2) = 1 is prime, but (7^21)/4  prime((71)/2) = 12  5 = 7 and (7^21)/4  prime((7+1)/2) = 12  7 = 5 are both prime.


MATHEMATICA

q[n_]:=PrimeQ[n(n+1)Prime[n]]&&PrimeQ[n(n+1)Prime[n+1]]
n=0; Do[If[q[(Prime[k]1)/2], n=n+1; Print[n, " ", Prime[k]]], {k, 2, 1000}]


CROSSREFS

Cf. A000040, A235592, A235727, A235805.
Sequence in context: A192187 A053403 A032672 * A238501 A133425 A103802
Adjacent sequences: A235803 A235804 A235805 * A235807 A235808 A235809


KEYWORD

nonn


AUTHOR

ZhiWei Sun, Jan 16 2014


STATUS

approved



