This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A235800 Length of n-th vertical line segment from left to right in a diagram of a two-dimensional version of the Collatz (or 3x + 1) problem. 3
 3, 1, 7, 2, 11, 3, 15, 4, 19, 5, 23, 6, 27, 7, 31, 8, 35, 9, 39, 10, 43, 11, 47, 12, 51, 13, 55, 14, 59, 15, 63, 16, 67, 17, 71, 18, 75, 19, 79, 20, 83, 21, 87, 22, 91, 23, 95, 24, 99, 25, 103, 26, 107, 27, 111, 28, 115, 29, 119, 30, 123, 31, 127, 32 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS In the diagram every cycle is represented by a directed graph. After (3x + 1) the next step is (3y + 1). After (x/2) the next step is (y/2). A235801(n) gives the length of n-th horizontal line segment in the same diagram. Also A004767 and A000027 interleaved. LINKS Chai Wah Wu, Table of n, a(n) for n = 1..10000 Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1). FORMULA a(n) = A006370(n) - A193356(n). From Chai Wah Wu, Sep 26 2016: (Start) a(n) = 2*a(n-2) - a(n-4) for n > 4. G.f.: x*(x^2 + x + 3)/((x - 1)^2*(x + 1)^2). (End) EXAMPLE The first part of the diagram in the first quadrant: . . . . . . . . . . . . . . . . . . . . . . . . .              _ _|_ _|_ _|_ _|_ _|_ _|_ _|_ _. .             |   |   |   |   |   |   |   |_|_. .             |   |   |   |   |   |   |  _ _|_. .             |   |   |   |   |   |   |_|_ _|_. .             |   |   |   |   |   |  _ _|_ _|_. .             |   |   |   |   |   |_|_ _|_ _|_. .          _ _|_ _|_ _|_ _|_ _|_ _ _|_ _|_ _|_. .         |   |   |   |   |   |_|_ _|_ _|_ _|_. .         |   |   |   |   |  _ _|_ _|_ _|_ _|_. .         |   |   |   |   |_|_ _|_ _|_ _|_ _|_. .         |   |   |   |  _ _|_ _|_ _|_ _|_ _|_. .         |   |   |   |_|_ _|_ _|_ _|_ _|_ _| . .      _ _|_ _|_ _|_ _ _|_ _|_ _|_ _|_ _|     . .     |   |   |   |_|_ _|_ _|_ _|_ _|         . .     |   |   |  _ _|_ _|_ _|_ _|             . .     |   |   |_|_ _|_ _|_ _|                 . .     |   |  _ _|_ _|_ _|                     . .     |   |_|_ _|_ _|                         . .  _ _|_ _ _|_ _|                             . . |   |_|_ _|                                 . . |  _ _|                                     . . |_|                                         . . . . . . . . . . . . . . . . . . . . . . . . . . 3,1,7,2,11... MATHEMATICA LinearRecurrence[{0, 2, 0, -1}, {3, 1, 7, 2}, 70] (* Harvey P. Dale, Sep 29 2016 *) PROG (Python) from __future__ import division A235800_list = [4*(n//2) + 3 if n % 2 else n//2 for n in range(1, 10**4)] # Chai Wah Wu, Sep 26 2016 CROSSREFS Cf. A000027, A004767, A005408, A006370, A014682, A016957, A070165, A193356, A235795, A235801. Sequence in context: A065287 A065263 A057114 * A065259 A065289 A065265 Adjacent sequences:  A235797 A235798 A235799 * A235801 A235802 A235803 KEYWORD nonn AUTHOR Omar E. Pol, Jan 15 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 23 00:18 EST 2019. Contains 320411 sequences. (Running on oeis4.)