This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A235794 Triangle read by rows: T(n,k), n>=1, k>=1, in which column k starts with k zeros and then lists the odd numbers interleaved with k zeros, and the first element of column k is in row k(k+1)/2. 10
 0, 1, 0, 0, 3, 0, 0, 1, 5, 0, 0, 0, 0, 0, 7, 3, 0, 0, 0, 1, 9, 0, 0, 0, 0, 5, 0, 0, 11, 0, 0, 0, 0, 0, 3, 0, 13, 7, 0, 1, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 9, 5, 0, 0, 17, 0, 0, 0, 0, 0, 0, 0, 3, 0, 19, 11, 0, 0, 1, 0, 0, 7, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS It appears that the alternating row sums give A120444, the first differences of A004125, i.e., sum_{k=1..A003056(n))} (-1)^(k-1)*T(n,k) = A120444(n). Row n has length A003056(n) hence the first element of column k is in row A000217(k). LINKS EXAMPLE Triangle begins: 0; 1; 0,  0; 3,  0; 0,  1; 5,  0,  0; 0,  0,  0; 7,  3,  0; 0,  0,  1; 9,  0,  0,  0; 0,  5,  0,  0; 11, 0,  0,  0; 0,  0,  3,  0; 13, 7,  0,  1; 0,  0,  0,  0,  0; 15, 0,  0,  0,  0; 0,  9,  5,  0,  0; 17, 0,  0,  0,  0; 0,  0,  0,  3,  0; 19, 11, 0,  0,  1; 0,  0,  7,  0,  0,  0; 21, 0,  0,  0,  0,  0; 0,  13, 0,  0,  0,  0; 23, 0,  0,  5,  0,  0; ... For n = 14 the 14th row of triangle is 13, 7, 0, 1, and the alternating sum is 13 - 7 + 0 - 1 = 5, the same as A120444(14) = 5. CROSSREFS Cf. A000203, A000217, A003056, A004125, A120444, A196020, A211343, A228813, A231345, A231347, A235791, A236104, A236106, A236112. Sequence in context: A126723 A325846 A325735 * A090030 A293616 A211649 Adjacent sequences:  A235791 A235792 A235793 * A235795 A235796 A235797 KEYWORD nonn,tabf AUTHOR Omar E. Pol, Jan 23 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 14:45 EDT 2019. Contains 328345 sequences. (Running on oeis4.)