login
A235727
Odd primes p with (p^2 - 1)/4 - prime((p - 1)/2) and (p^2 - 1)/4 + prime((p - 1)/2) both prime.
5
7, 11, 19, 23, 41, 73, 83, 109, 197, 211, 229, 271, 379, 461, 541, 631, 641, 659, 859, 991, 1031, 1049, 1051, 1093, 1103, 1217, 1429, 1451, 1879, 2063, 2131, 2287, 2341, 2411, 3019, 3257, 3461, 3659, 3673, 3691, 3709, 3917, 3967, 4409, 4463, 4519, 5279, 5303, 5471, 5477
OFFSET
1,1
COMMENTS
By the conjecture in A235728, this sequence should have infinitely many terms.
EXAMPLE
a(1) = 7 since neither (3^2-1)/4 - prime((3-1)/2) = 1 nor (5^2-1)/4 + prime((5-1)/2) = 9 is prime, but (7^2-1)/4 - prime((7-1)/2) = 12 - 5 = 7 and (7^2-1)/4 + prime((7-1)/2) = 12 + 5 = 17 are both prime.
MATHEMATICA
q[n_]:=q[n]=PrimeQ[n(n+1)-Prime[n]]&&PrimeQ[n(n+1)+Prime[n]]
n=0; Do[If[q[(Prime[k]-1)/2], n=n+1; Print[n, " ", Prime[k]]], {k, 2, 1000}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 15 2014
STATUS
approved