login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A235725 Values k(i) such that k(i) + k(i+3) = k(i+1) + k(i+2), where k(i) is A022885(i). 1
5, 353, 541, 853, 2341, 4217, 4229, 8219, 10663, 11047, 13591, 18593, 21577, 28387, 30181, 34457, 37853, 52021, 55333, 57203, 75389, 84431, 93229, 110603, 120811, 147451, 153499, 162907, 166357, 176797, 179581, 219953, 243671, 246203, 307253, 342037, 359701 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Peter J. C. Moses, Table of n, a(n) for n = 1..5000

EXAMPLE

Four consecutive Kimberling primes(A022885), beginning with 5 are 5,7,11,13. Since 5+13 = 7+11, then 5 is in the sequence; four consecutive Kimberling primes, beginning with 7 are 7,11,13,23. Since 7+23 is not equal to 11+13, then 7 is not in the sequence.

MATHEMATICA

Nest[Map[#[[1]]&, Select[Partition[#, 4, 1], #[[1]]+#[[4]]==#[[2]]+#[[3]]&]]&, Prime[Range[5000]], 2]

PROG

(PARI) isA022885(p) = {my(k = primepi(p)); (p == prime(k)) && ((prime(k) + prime(k+3)) == (prime(k+1) + prime(k+2))); }

lista(nn) = {prm = primes(nn); vkp = select(p->isA022885(p), prm); for(n=1, #vkp-3, if ((vkp[n] + vkp[n+3]) == (vkp[n+1] + vkp[n+2]), print1(vkp[n], ", ")); ); }  \\ Michel Marcus, Jan 15 2014

CROSSREFS

Cf. A022885.

Sequence in context: A193806 A158105 A203527 * A332135 A225578 A172014

Adjacent sequences:  A235722 A235723 A235724 * A235726 A235727 A235728

KEYWORD

nonn

AUTHOR

Vladimir Shevelev, Jan 15 2014

EXTENSIONS

a(5)-a(37) from Giovanni Resta, Jan 15 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 2 08:02 EDT 2020. Contains 335398 sequences. (Running on oeis4.)