OFFSET
1,1
COMMENTS
This sequence is an interesting subsequence of A235483 with symmetrical numbers of the form abcabc or abcabc0, and these numbers are divisible by 2*3*5*7*11*13 = 30030. This property of symmetry disappears when length(a(n)) > 7.
LINKS
Michel Lagneau, Table of n, a(n) for n = 1..44
EXAMPLE
180180 = 2 ^ 2 * 3 ^ 2 * 5 * 7 * 11 * 13 is in the sequence because the three twin prime divisors are {3,5}, {5,7} and {11, 13}.
MAPLE
with(numtheory) :kk:=0:
for n from 1 to 10^7 do:
p1:=ithprime(n):p2:=ithprime(n+1):
if p2=p1+2
then
ii:=0:x:=factorset(p1+1):n1:=nops(x):
for i from 1 to n1-1 do:
if x[i+1]=x[i]+2
then
ii:=ii+1:
else fi:
od:
if ii=3 and irem(p1+1, 30030)=0
then
kk:=kk+1:printf ( "%d %d \n", kk, p1+1):
else fi:
fi:
od:
CROSSREFS
KEYWORD
nonn,fini,full
AUTHOR
Michel Lagneau, Jan 15 2014
STATUS
approved