|
|
A235712
|
|
Least prime p < prime(n) with 2^p + 1 a quadratic nonresidue modulo prime(n), or 0 if such a prime p does not exist.
|
|
5
|
|
|
0, 2, 0, 2, 7, 2, 2, 5, 2, 11, 11, 2, 7, 2, 2, 2, 5, 5, 2, 5, 2, 5, 2, 5, 2, 7, 2, 2, 5, 2, 2, 13, 2, 5, 13, 5, 2, 2, 2, 2, 5, 11, 5, 2, 2, 7, 5, 2, 2, 23, 2, 7, 5, 5, 2, 2, 5, 5, 2, 7, 2, 2, 2, 5, 2, 2, 7, 2, 2, 5, 2, 7, 2, 2, 11, 2, 5, 2, 5, 5, 5, 7, 7, 2, 5, 2, 5, 2, 7, 2, 2, 7, 2, 13, 7, 2, 5, 5, 2, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Conjecture: a(n) > 0 for all n > 3.
Note that 2^3 + 1 = 3^2 is a quadratic residue modulo any prime p > 3. Also, there is no prime p < prime(316) = 2089 with 2^p + 1 a primitive root modulo 2089.
See also A234972 and A235709 for similar conjectures.
|
|
LINKS
|
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Z.-W. Sun, New observations on primitive roots modulo primes, arXiv preprint arXiv:1405.0290 [math.NT], 2014.
|
|
EXAMPLE
|
a(4) = 2 since 2^2 + 1 = 5 is a quadratic nonresidue modulo prime(4) = 7.
|
|
MATHEMATICA
|
Do[Do[If[JacobiSymbol[2^(Prime[k])+1, Prime[n]]==-1, Print[n, " ", Prime[k]]; Goto[aa]], {k, 1, n-1}];
Print[n, " ", 0]; Label[aa]; Continue, {n, 1, 100}]
|
|
CROSSREFS
|
Cf. A000040, A098640, A234972, A235709.
Sequence in context: A111111 A185343 A161014 * A154852 A088996 A211888
Adjacent sequences: A235709 A235710 A235711 * A235713 A235714 A235715
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Zhi-Wei Sun, Apr 20 2014
|
|
STATUS
|
approved
|
|
|
|