login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A235702 Fixed points of A001175 (Pisano periods). 3
1, 24, 120, 600, 3000, 15000, 75000, 375000, 1875000, 9375000, 46875000, 234375000, 1171875000, 5859375000, 29296875000, 146484375000, 732421875000, 3662109375000, 18310546875000, 91552734375000, 457763671875000, 2288818359375000, 11444091796875000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A001175(a(n)) = a(n); A001178(a(n)) = 0.

LINKS

Table of n, a(n) for n=1..23.

J. D. Fulton and W. L. Morris, On arithmetical functions related to the Fibonacci numbers, Acta Arithmetica, 16 (1969), 105-110.

Wikipedia, Pisano period

Index entries for linear recurrences with constant coefficients, signature (5).

FORMULA

a(n) = 24*5^(n-2) for n>1. a(n) = 5*a(n-1) for n>2. G.f.: -x*(19*x+1) / (5*x-1). - Colin Barker, Jan 16 2014

MATHEMATICA

LinearRecurrence[{5}, {1, 24}, 30] (* or *) Join[{1}, NestList[5#&, 24, 30]] (* Harvey P. Dale, May 07 2017 *)

PROG

(Haskell)

a235702 n = if n == 1 then 1 else 24 * 5 ^ (n - 2)

a235702_list = 1 : iterate (* 5) 24

(PARI)

Vec(-x*(19*x+1)/(5*x-1) + O(x^100)) \\ Colin Barker, Jan 16 2014

CROSSREFS

Cf. A008606, A000351.

Sequence in context: A292979 A052760 A179720 * A052754 A050213 A124657

Adjacent sequences:  A235699 A235700 A235701 * A235703 A235704 A235705

KEYWORD

nonn,easy

AUTHOR

Reinhard Zumkeller, Jan 15 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 17:32 EST 2019. Contains 329979 sequences. (Running on oeis4.)