login
A235702
Fixed points of A001175 (Pisano periods).
4
1, 24, 120, 600, 3000, 15000, 75000, 375000, 1875000, 9375000, 46875000, 234375000, 1171875000, 5859375000, 29296875000, 146484375000, 732421875000, 3662109375000, 18310546875000, 91552734375000, 457763671875000, 2288818359375000, 11444091796875000
OFFSET
1,2
LINKS
Shaoshi Chen, Hanqian Fang, Sergey Kitaev, and Candice X.T. Zhang, Patterns in Multi-dimensional Permutations, arXiv:2411.02897 [math.CO], 2024. See pp. 2, 26.
J. D. Fulton and W. L. Morris, On arithmetical functions related to the Fibonacci numbers, Acta Arithmetica, 16 (1969), 105-110.
Wikipedia, Pisano period
FORMULA
A001175(a(n)) = a(n); A001178(a(n)) = 0.
From Colin Barker, Jan 16 2014: (Start)
a(n) = 24*5^(n-2) for n > 1.
a(n) = 5*a(n-1) for n > 2.
G.f.: -x*(19*x+1) / (5*x-1). (End)
E.g.f.: (24*(exp(5*x) - 1) - 95*x)/25. - Stefano Spezia, Nov 09 2024
MATHEMATICA
LinearRecurrence[{5}, {1, 24}, 30] (* or *) Join[{1}, NestList[5#&, 24, 30]] (* Harvey P. Dale, May 07 2017 *)
PROG
(Haskell)
a235702 n = if n == 1 then 1 else 24 * 5 ^ (n - 2)
a235702_list = 1 : iterate (* 5) 24
(PARI)
Vec(-x*(19*x+1)/(5*x-1) + O(x^100)) \\ Colin Barker, Jan 16 2014
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Reinhard Zumkeller, Jan 15 2014
STATUS
approved