login
A235686
Small gaps between primes - refinement of the GPY sieve method.
1
0, 10, 12, 24, 28, 30, 34, 42, 48, 52, 54, 64, 70, 72, 78, 82, 90, 94, 100, 112, 114, 118, 120, 124, 132, 138, 148, 154, 168, 174, 178, 180, 184, 190, 192, 202, 204, 208, 220, 222, 232, 234, 250, 252, 258, 262, 264, 268, 280, 288, 294, 300, 310, 322, 324, 328, 330, 334, 342, 352, 358, 360, 364, 372, 378, 384, 390, 394, 400, 402, 408, 412, 418, 420, 430, 432, 442, 444, 450, 454, 462, 468, 472, 478, 484, 490, 492, 498, 504, 510, 528, 532, 534, 538, 544, 558, 562, 570, 574, 580, 582, 588, 594, 598, 600
OFFSET
0,2
COMMENTS
The work of Maynard represents an improvement over Yitang Zhang's estimate for prime pairs relating to the GPY sieve method.
The list is finite with 105 terms.
LINKS
James Maynard, Small gaps between primes, arXiv:1311.4600 [math.NT], 2013-2019. See p. 6.
EXAMPLE
3 succeeds because 3 + 0 and 3 + 10 are both prime
CROSSREFS
Sequence in context: A098785 A022324 A084953 * A087697 A241177 A140972
KEYWORD
nonn,fini,full
AUTHOR
STATUS
approved