

A235632


Primes whose base 5 representation is also the base 8 representation of a prime.


2



2, 3, 11, 13, 31, 41, 53, 73, 101, 131, 151, 223, 281, 313, 353, 401, 463, 521, 523, 541, 593, 661, 701, 733, 773, 941, 983, 1013, 1063, 1091, 1093, 1123, 1153, 1193, 1201, 1321, 1381, 1423, 1471, 1481, 1483, 1571, 1583, 1601, 1613, 1663, 1693, 1741, 1753, 1801, 1861, 1871, 1873
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

This sequence is part of a two dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720  A065727, follow the same idea with one base equal to 10.


LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000
M. F. Hasler, Primes whose base c expansion is also the base b expansion of a prime


EXAMPLE

E.g., 11 = 21[5] and 21[8] = 17 both are prime.


MATHEMATICA

Select[Prime[Range[300]], PrimeQ[FromDigits[IntegerDigits[#, 5], 8]]&] (* Harvey P. Dale, Dec 15 2018 *)


PROG

(PARI) is(p, b=8, c=5)=isprime(vector(#d=digits(p, c), i, b^(#di))*d~)&&isprime(p) \\ NB: This code is only valid for b>c.


CROSSREFS

Cf. A235628, A235265, A235266, A152079, A235461  A235482, A065720  A065727, A235394, A235395, A089971 ⊂ A020449, A089981, A090707  A091924, A235615  A235639. See the LINK for further crossreferences.
Sequence in context: A078763 A157884 A234530 * A085306 A161322 A123239
Adjacent sequences: A235629 A235630 A235631 * A235633 A235634 A235635


KEYWORD

nonn,base


AUTHOR

M. F. Hasler, Jan 13 2014


STATUS

approved



