

A235614


Number of ordered ways to write n = k + m with k a term of A235592 and m a positive triangular number.


7



0, 0, 1, 1, 2, 2, 2, 2, 3, 2, 2, 4, 1, 3, 3, 2, 3, 3, 3, 3, 5, 2, 3, 5, 3, 3, 3, 2, 4, 6, 2, 4, 3, 2, 4, 4, 4, 2, 6, 4, 4, 6, 2, 5, 2, 3, 7, 5, 4, 4, 6, 1, 2, 6, 5, 4, 5, 4, 5, 5, 1, 4, 7, 5, 5, 4, 2, 3, 5, 4, 4, 8, 4, 6, 4, 4, 4, 1, 2, 4, 7, 5, 3, 5, 3, 5, 3, 2, 6, 6, 4, 6, 8, 1, 4, 5, 5, 4, 7, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


COMMENTS

Conjecture: a(n) > 0 for all n > 2.


LINKS

ZhiWei Sun, Table of n, a(n) for n = 1..10000


EXAMPLE

a(13) = 1 since 13 = 3 + 10 with 3*4  prime(3) = 7 prime and 10 = 4*5/2 a positive triangular number.
a(52) = 1 since 52 = 37 + 15 with 37*38  prime(37) = 1249 prime and 15 = 5*6/2 a positive triangular number.
a(61) = 1 since 61 = 6 + 55 with 6*7  prime(6) = 29 prime and 55 = 10*11/2 a positive triangular number.
a(313) = 1 since 313 = 37 + 276 with 37*38  prime(37) = 1249 prime and 276 = 23*24/2 a positive triangular number.


MATHEMATICA

PQ[n_]:=PrimeQ[n(n+1)Prime[n]]
TQ[n_]:=IntegerQ[Sqrt[8n+1]]
a[n_]:=Sum[If[PQ[k]&&TQ[nk], 1, 0], {k, 1, n1}]
Table[a[n], {n, 1, 100}]


CROSSREFS

Cf. A000040, A000217, A235592, A235613.
Sequence in context: A134868 A322861 A237259 * A127417 A198897 A201375
Adjacent sequences: A235611 A235612 A235613 * A235615 A235616 A235617


KEYWORD

nonn


AUTHOR

ZhiWei Sun, Jan 13 2014


STATUS

approved



