login
Coefficient of q^4 in the polynomial NT_{n,mu}(q).
2

%I #10 Nov 26 2017 09:50:40

%S 2,23,135,561,1870,5328,13476,31020,66132,132275,250679,453609,788580,

%T 1323688,2154240,3410880,5269422,7962615,11794079,17154665,24541506,

%U 34580040,48049300,65910780,89341200,119769507,158918463,208851185,272023016,351339120

%N Coefficient of q^4 in the polynomial NT_{n,mu}(q).

%C See Jones et al. (2013) for precise definition.

%H M. Jones, S. Kitaev, J. Remmel, <a href="http://arxiv.org/abs/1311.3332">Frame patterns in n-cycles</a>, arXiv preprint arXiv:1311.3332, 2013

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1).

%F G.f.: -x^5*(2+5*x+6*x^3+x^4) / ( (x-1)^9 ). - _R. J. Mathar_, Apr 23 2015

%p A235594 := proc(n)

%p 2*binomial(n-1,4)

%p +13*binomial(n-1,5)

%p +27*binomial(n-1,6)

%p +29*binomial(n-1,7)

%p +14*binomial(n-1,8) ;

%p end proc:

%p seq(A235594(n),n=5..50) ; # _R. J. Mathar_, Apr 23 2015

%t a[n_] := 2*Binomial[n-1, 4] + 13*Binomial[n-1, 5] + 27*Binomial[n-1, 6] + 29*Binomial[n-1, 7] + 14*Binomial[n-1, 8];

%t Table[a[n], {n, 5, 50}] (* _Jean-François Alcover_, Nov 26 2017, after _R. J. Mathar_ *)

%Y Cf. A235593.

%K nonn,easy

%O 5,1

%A _N. J. A. Sloane_, Jan 13 2014