%I #10 Nov 26 2017 09:50:40
%S 2,23,135,561,1870,5328,13476,31020,66132,132275,250679,453609,788580,
%T 1323688,2154240,3410880,5269422,7962615,11794079,17154665,24541506,
%U 34580040,48049300,65910780,89341200,119769507,158918463,208851185,272023016,351339120
%N Coefficient of q^4 in the polynomial NT_{n,mu}(q).
%C See Jones et al. (2013) for precise definition.
%H M. Jones, S. Kitaev, J. Remmel, <a href="http://arxiv.org/abs/1311.3332">Frame patterns in n-cycles</a>, arXiv preprint arXiv:1311.3332, 2013
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1).
%F G.f.: -x^5*(2+5*x+6*x^3+x^4) / ( (x-1)^9 ). - _R. J. Mathar_, Apr 23 2015
%p A235594 := proc(n)
%p 2*binomial(n-1,4)
%p +13*binomial(n-1,5)
%p +27*binomial(n-1,6)
%p +29*binomial(n-1,7)
%p +14*binomial(n-1,8) ;
%p end proc:
%p seq(A235594(n),n=5..50) ; # _R. J. Mathar_, Apr 23 2015
%t a[n_] := 2*Binomial[n-1, 4] + 13*Binomial[n-1, 5] + 27*Binomial[n-1, 6] + 29*Binomial[n-1, 7] + 14*Binomial[n-1, 8];
%t Table[a[n], {n, 5, 50}] (* _Jean-François Alcover_, Nov 26 2017, after _R. J. Mathar_ *)
%Y Cf. A235593.
%K nonn,easy
%O 5,1
%A _N. J. A. Sloane_, Jan 13 2014