OFFSET
0,2
COMMENTS
LINKS
Robert Israel, Table of n, a(n) for n = 0..403
Zhi-Wei Sun, On Divisibility Of Binomial Coefficients, Journal of the Australian Mathematical Society 93 (2012), p. 189-201.
FORMULA
From Ilya Gutkovskiy, Jun 21 2018: (Start)
G.f.: 6F5(1/9,2/9,4/9,5/9,7/9,8/9; 1/3,1/2,2/3,5/6,7/6; 19683*x/64).
a(n) ~ 3^(9*n-1)/(sqrt(Pi)*4^(3*n+1)*n^(3/2)). (End)
D-finite with recurrence 8*(6*n + 5)*(2*n + 1)*(n + 1)*(3*n + 2)*(3*n + 1)*(6*n + 7)*a(n + 1) = 3*(9*n + 8)*(9*n + 7)*(9*n + 5)*(9*n + 4)*(9*n + 2)*(9*n + 1)*a(n). - Robert Israel, Feb 15 2021
MAPLE
seq(binomial(9*n, 3*n)/(6*n+1), n=0..30); # Robert Israel, Feb 15 2021
MATHEMATICA
Table[Binomial[9 n, 3 n]/(6 n + 1), {n, 0, 20}]
PROG
(Magma) l:=6; k:=3; [Binomial((l+k)*n, k*n)/(l*n+1): n in [0..20]]; /* here l is divisible by all the prime factors of k */
CROSSREFS
Cf. similar sequences generated by binomial((l+k)*n,k*n)/(l*n+1), where l is divisible by all the factors of k: A000108 (l=1, k=1), A001764 (l=2, k=1), A002293 (l=3, k=1), A002294 (l=4, k=1), A002295 (l=5, k=1), A002296 (l=6, k=1), A007556 (l=7, k=1), A062994 (l=8, k=1), A059968 (l=9, k=1), A230388 (l=10, k=1), A048990 (l=2, k=2), A235534 (l=4, k=2), A235536 (l=6, k=2), A187357 (l=3, k=3), this sequence (l=6, k=3).
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jan 12 2014
STATUS
approved