OFFSET
1,2
COMMENTS
Let alpha be an algebraic integer and define a sequence of integers a(n) by the condition a(n) = max {integer d : alpha^n == 1 (mod d)}. Silverman shows that a(n) is a strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all n and m in N; in particular, if n divides m then a(n) divides a(m). For the present sequence we take alpha = 2 + 3*sqrt(3). For other examples see A230368, A230369 and (conjecturally) A082630.
LINKS
J. H. Silverman, Divisibility sequences and powers of algebraic integers, Documenta Mathematica, Extra Volume: John H. Coates' Sixtieth Birthday (2006) 711-727
FORMULA
a(n) = max {integer d : (2 + 3*sqrt(3))^n == 1 (mod d)}.
a(n) = gcd( 1/2*((2 - 3*sqrt(3))^n + (2 + 3*sqrt(3))^n - 2), ((2 + 3*sqrt(3))^n - (2 - 3*sqrt(3))^n)/(2*sqrt(3)) ).
MAPLE
seq(gcd( expand(1/2*((2 - 3*sqrt(3))^n + (2 + 3*sqrt(3))^n - 2)), expand(((2 + 3*sqrt(3))^n - (2 - 3*sqrt(3))^n)/(2*sqrt(3))) ), n = 1 .. 80);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Jan 10 2014
STATUS
approved