login
A235449
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with the difference between each 2X2 subblock maximum and minimum lexicographically nondecreasing rowwise and columnwise
8
16, 58, 58, 208, 382, 208, 742, 2476, 2476, 742, 2644, 15936, 28962, 15936, 2644, 9418, 102376, 335898, 335898, 102376, 9418, 33544, 657290, 3886120, 7017768, 3886120, 657290, 33544, 119470, 4219322, 44920240, 146213244, 146213244, 44920240
OFFSET
1,1
COMMENTS
Table starts
......16.........58..........208.............742...............2644
......58........382.........2476...........15936.............102376
.....208.......2476........28962..........335898............3886120
.....742......15936.......335898.........7017768..........146213244
....2644.....102376......3886120.......146213244.........5485253042
....9418.....657290.....44920240......3043145826.......205551169550
...33544....4219322....519099694.....63315473350......7699719982722
..119470...27083638...5998218844...1317184566572....288383414393138
..425500..173846264..69307887110..27401048899854..10800536489561114
.1515442.1115891712.800828757910.570010121664030.404495358726610494
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 4*a(n-1) -a(n-2) -2*a(n-3)
k=2: a(n) = 8*a(n-1) -8*a(n-2) -16*a(n-3) +12*a(n-4) +14*a(n-5) -a(n-6) -2*a(n-7)
k=3: [order 19]
k=4: [order 53]
EXAMPLE
Some solutions for n=3 k=4
..0..0..0..1..0....0..0..1..0..1....0..0..0..0..0....0..0..1..0..1
..0..1..1..1..0....0..0..0..1..1....1..1..0..1..0....0..1..0..1..0
..1..1..0..1..0....0..0..1..0..0....0..0..0..1..0....0..1..0..0..1
..0..0..1..0..0....0..1..1..1..1....0..1..0..1..0....0..0..0..1..0
CROSSREFS
Column 1 is A180143(n+1)
Sequence in context: A316443 A223313 A235679 * A235736 A235517 A253428
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 10 2014
STATUS
approved