login
A235413
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with 2X2 subblock sums lexicographically nondecreasing rowwise and nonincreasing columnwise
7
16, 44, 44, 121, 172, 121, 286, 704, 704, 286, 676, 2302, 4256, 2302, 676, 1482, 7617, 20398, 20398, 7617, 1482, 3249, 21707, 98575, 150862, 98575, 21707, 3249, 6840, 62070, 397340, 1155953, 1155953, 397340, 62070, 6840, 14400, 160219, 1623115
OFFSET
1,1
COMMENTS
Table starts
....16.....44......121........286...........676............1482
....44....172......704.......2302..........7617...........21707
...121....704.....4256......20398.........98575..........397340
...286...2302....20398.....150862.......1155953.........7379380
...676...7617....98575....1155953......13930916.......145005714
..1482..21707...397340....7379380.....145005714......2573684600
..3249..62070..1623115...48788187....1561049902.....48150637857
..6840.160219..5744912..273307984...14369333157....775525688659
.14400.413728.20612708.1578043496..137304769214..13190905086499
.29640.994013.65877470.7881635316.1126706100728.190687328015653
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 4*a(n-1) -18*a(n-3) +17*a(n-4) +22*a(n-5) -36*a(n-6) +20*a(n-8) -8*a(n-9)
k=2: [order 31]
k=3: [order 73]
EXAMPLE
Some solutions for n=4 k=4
..0..0..0..0..0....0..0..0..0..0....1..0..0..0..0....1..0..0..0..0
..1..0..1..0..1....1..1..0..0..0....1..1..1..0..1....1..0..1..0..0
..0..0..0..0..0....0..0..0..0..0....1..0..0..1..0....1..1..0..0..1
..1..1..1..1..1....1..1..0..0..0....1..1..1..0..1....1..1..1..0..1
..1..0..1..0..0....0..1..1..0..1....1..1..1..0..0....1..1..1..0..0
CROSSREFS
Column 1 is A204032
Sequence in context: A258554 A253326 A204039 * A238255 A210375 A173560
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 10 2014
STATUS
approved