The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A235397 The first term of the least sequence of n consecutive Moran numbers. 4
 18, 152, 3031, 21481224, 25502420, 4007565001480, 2196125475223740, 905295493763807066010 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A number n is a Moran number if n divided by the sum of its decimal digits is prime. From Amiram Eldar, Apr 25 2020: (Start) Jens Kruse Andersen found that a(7) <= 2196125475223740 and a(8) <= 905295493763807066010 (see Rivera link). Since Moran numbers (A001101) are also Niven numbers (A005349), this sequence is finite with no more than 20 terms (see A060159). (End) a(9) <= 270140199032572375590810. - Giovanni Resta, Apr 30 2020 LINKS Giovanni Resta, Moran numbers Carlos Rivera, Puzzle 728. Consecutive Moran numbers, The Prime Puzzles & Problems Connection. EXAMPLE a(6) = 4007565001480 because 4007565001480 = 40 * 100189125037, 4007565001481 = 41 * 97745487841, 4007565001482 = 42 * 95418214321, 4007565001483 = 43 * 93199186081, 4007565001484 = 44 * 91081022761, 4007565001485 = 45 * 89057000033. PROG (PARI) isA001101(n)=(k->denominator(k)==1&&isprime(k))(n/sumdigits(n)) a(n)=my(k=n); while(1, forstep(i=k, k-n+1, -1, if(!isA001101(i), k=i+n; next(2))); return(k-n+1)) \\ Charles R Greathouse IV, Jan 10 2014 CROSSREFS Cf. A001101, A060159, A085775. Sequence in context: A027182 A294486 A228994 * A252971 A047643 A010934 Adjacent sequences:  A235394 A235395 A235396 * A235398 A235399 A235400 KEYWORD nonn,hard,base,fini,more AUTHOR Carlos Rivera, Jan 09 2014 EXTENSIONS a(7)-a(8) from Giovanni Resta, Apr 27 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 06:31 EDT 2020. Contains 334697 sequences. (Running on oeis4.)