login
A235384
Number of involutions in the group Aff(Z/nZ).
2
2, 4, 6, 6, 8, 8, 16, 10, 12, 12, 24, 14, 16, 24, 28, 18, 20, 20, 36, 32, 24, 24, 64, 26, 28, 28, 48, 30, 48, 32, 52, 48, 36, 48, 60, 38, 40, 56, 96, 42, 64, 44, 72, 60, 48, 48, 112, 50, 52, 72, 84, 54, 56, 72, 128, 80, 60, 60, 144, 62, 64, 80, 100, 84
OFFSET
2,1
COMMENTS
Aff(Z/nZ) is the group of functions on Z/nZ of the form x->ax+b where a and b are elements of Z/nZ and gcd(a,n)=1.
Since Aff(Z/nZ) is isomorphic to the automorphism group of the dihedral group with 2n elements (when n>=3), this is the number of automorphisms of the dihedral group with 2n elements that have order 1 or 2.
The sequence is multiplicative: a(k*m) = a(k)*a(m) if m and k are coprime.
When n=26, this is the number of affine ciphers where encryption and decryption use the same function.
LINKS
K. K. A. Cunningham, Tom Edgar, A. G. Helminck, B. F. Jones, H. Oh, R. Schwell and J. F. Vasquez, On the Structure of Involutions and Symmetric Spaces of Dihedral Groups, Note di Mat., Volume 34, No. 2, 2014.
FORMULA
Suppose n = 2^m*p_1^(r_1)*p_2^(r_2)*...*p_k^(r_k) where each p_i>2 is prime, r_i>0 for all i, and m>=0 is the prime factorization of n, then:
...a(n) = Product_{1<=i<=k} (p_i^(r_i)+1) if m=0,
...a(n) = 2*Product_{1<=i<=k} (p_i^(r_i)+1) if m=1,
...a(n) = 6*Product_{1<=i<=k} (p_i^(r_i)+1) if m=2,
...a(n) = (4+2^(m-1)+2^m)*Product_{1<=i<=k} (p_i^(r_i)+1) if m>=3.
a(n) = Sum_{a in row(n) of A228179} gcd(a+1,n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = zeta(2)/(2*zeta(3)) = 0.684216... (A335005). - Amiram Eldar, Dec 05 2022
EXAMPLE
Since 18 = 2*3^2, we get a(18) = 2*(3^2+1) = 20. Since 120 = 2^3*3*5, we have a(120) = (4+2^2+2^3)*(3+1)*(5+1) = 384.
MAPLE
a:= n-> add(`if`(irem(k^2, n)=1, igcd(n, k+1), 0), k=1..n-1):
seq(a(n), n=2..100); # Alois P. Heinz, Jan 20 2014
MATHEMATICA
a[n_] := Sum[If[Mod[k^2, n] == 1, GCD[n, k+1], 0], {k, 1, n-1}]; Table[a[n], {n, 2, 100}] (* Jean-François Alcover, Mar 24 2014, after Alois P. Heinz *)
f[p_, e_] := p^e + 1; f[2, 1] = 2; f[2, 2] = 6; f[2, e_] := 3*2^(e - 1) + 4; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100, 2] (* Amiram Eldar, Dec 05 2022 *)
PROG
(Sage)
def a(n):
L=list(factor(n))
if L[0][0]==2:
m=L[0][1]
L.pop(0)
else:
m=0
order=prod([x[0]^x[1]+1 for x in L])
if m==1:
order=2*order
elif m==2:
order=6*order
elif m>=3:
order=(4+2^(m-1)+2^m)*order
return order
[a(i) for i in [2..100]]
(Sage)
def b(n):
sum = 0
for a in [x for x in range(n) if ((x^2) % n == 1)]:
sum += gcd(a+1, n)
return sum
[b(i) for i in [2..100]]
(PARI) A034448(n, f=factor(n))=factorback(vector(#f~, i, f[i, 1]^f[i, 2]+1))
a(n)=my(m=valuation(n, 2)); if(m==0, 1, m==1, 2, m==2, 6, 4+3<<(m-1))*A034448(n>>m) \\ Charles R Greathouse IV, Jul 29 2016
CROSSREFS
KEYWORD
nonn,easy,look,mult,nice
AUTHOR
Tom Edgar, Jan 08 2014
STATUS
approved