login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A235365 Smallest odd prime factor of 3^n + 1, for n > 1. 8
5, 7, 41, 61, 5, 547, 17, 7, 5, 67, 41, 398581, 5, 7, 21523361, 103, 5, 2851, 41, 7, 5, 23535794707, 17, 61, 5, 7, 41, 523, 5, 6883, 926510094425921, 7, 5, 61, 41, 18427, 5, 7, 17, 33703, 5, 82064241848634269407, 41, 7, 5, 16921, 76801, 547, 5, 7, 41, 78719947, 5, 61, 17, 7, 5, 3187, 41 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

COMMENTS

Levi Ben Gerson (1288-1344) proved that 3^n + 1 = 2^m has no solution in integers if n > 1, by showing that 3^n + l has an odd prime factor. His proof uses remainders after division of powers of 3 by 8 and powers of 2 by 8; see the Lenstra and Peterson links. For an elegant short proof, see the Franklin link.

REFERENCES

L. E. Dickson, History of the Theory of Numbers, Vol. II, Chelsea, NY 1992; see p. 731.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 2..132

Philip Franklin, Problem 2927, Amer. Math. Monthly, 30 (1923), p. 81.

Aaron Herschfeld, The equation 2^x - 3^y = d, Bull. Amer. Math. Soc., 42 (1936), 231-234.

Hendrik Lenstra Harmonic Numbers, MSRI, 1998.

J. J. O'Connor and E. F. Robertson, Levi ben Gerson, The MacTutor History of Mathematics archive, 2009.

Ivars Peterson, Medieval Harmony, Math Trek, MAA, 2012.

Wikipedia, Gersonides

FORMULA

a(2+4n) = 5 as 3^(2+4n) + 1 = (3^2)*(3^4)^n + 1 = 9*81^n + 1 = 9*(80+1)^n + 1 == 9 + 1 == 0 (mod 5).

a(3+6n) = 7 as 3^(3+6n) + 1 = (3^3)*(3^6)^n + 1 = 27*729^n + 1 = 27*(728+1)^n + 1 == 27 + 1 == 0 (mod 7), but 27 * 729^n + 1 == 2*(-1)^n + 1 !== 0 (mod 5).

EXAMPLE

3^2 + 1 = 10 = 2*5, so a(2) = 5.

MATHEMATICA

Table[FactorInteger[3^n + 1][[2, 1]], {n, 2, 50}]

PROG

(MAGMA) [PrimeDivisors(3^n +1)[2]: n in [2..60] ] ; // Vincenzo Librandi, Mar 16 2019

CROSSREFS

See A235366 for 3^n - 1.

Cf. also A003586 (products 2^m * 3^n), A006899, A061987, A108906.

Sequence in context: A153376 A235139 A263448 * A189241 A167205 A123781

Adjacent sequences:  A235362 A235363 A235364 * A235366 A235367 A235368

KEYWORD

nonn

AUTHOR

Jonathan Sondow, Jan 19 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 12 19:25 EST 2019. Contains 329078 sequences. (Running on oeis4.)