OFFSET
0,2
COMMENTS
Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p = 11, r = 9.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
Thomas A. Dowling, Catalan Numbers Chapter 7
Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
Wikipedia, Fuss-Catalan number
FORMULA
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, here p = 11, r = 9.
O.g.f. A(x) = 1/x * series reversion (x/C(x)^9), where C(x) is the o.g.f. for the Catalan numbers A000108. A(x)^(1/9) is the o.g.f. for A230388. - Peter Bala, Oct 14 2015
MATHEMATICA
Table[9 Binomial[11 n + 9, n]/(11 n + 9), {n, 0, 30}]
PROG
(PARI) a(n) = 9*binomial(11*n+9, n)/(11*n+9);
(PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(11/9))^9+x*O(x^n)); polcoeff(B, n)}
(Magma) [9*Binomial(11*n+9, n)/(11*n+9): n in [0..30]];
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Tim Fulford, Jan 06 2014
STATUS
approved